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RESUME

Les représentations temps-fréquence affines sont des outils
de description temps-fréquence des signauz d large bande. La
référence au groupe affine rappelle leur origine axziomatique
fondée sur Uétude des changements d’horloge. L’objel de ce
papier est a la fois de présenter une dérivation directe de
la principale distribution affine et de donner des indications
sur son usage.

1 Introduction.

By now, the relevance of the introduction of the affine group
of time translations b and dilations a > 0 in signal analysis
is well established. The action of this group on a signal s(t)

is given by:
s(t) — a” s(a”1(t — b)) (1)

where the real number r is determined by the physical di-
mension of the signal under consideration (change of unit of
measurement).

Time-frequency representations of signals can be intro-
duced as real sesquilinear forms of s(t) which transform like:

P(t,f) — P'(t,f) = a® P(a™'(t = b),af) (2)

when the signal is transformed by (1). The real number ¢
occuring in (2) characterizes the physical dimension of P. It
is left free and has to be fitted to the required interpretation
of P.

The most general time-frequency distribution transform-
ing as (2) when the signal is transformed by (1) is given by

[1]:
P(t, f) =| f |72 f0°° f0°° e2imtf (v—v')
I{(vy v’)S(fv)S* (fvl) dv dv’

3)

where S(f) is the Fourier transform of s(t) and where the
kernel K (v, v’) is a real symmetric function. This latter con-
dition on the kernel is in fact introduced in order to ensure
that the representation of a physical signal verify:

!
P(t’f)EP(ta"‘f)

Formula (3) does not involve any interference between posi-
tive and negative fequency contents of the signal under study.
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This situation allows to limit the application of (3) to tl
positive frequency part of a signal (analytic signal) in o
der to get directly the positive frequency part of its tim
frequency representation. In the following we will assun
that all signals can be represented by real functions of tin
and the above simplification will systematically be used. .
terms of the frequency description of signals, the action
the affine group is given by:

Z(f) s Za,b(f) — ar+le—2i7rbfZ(af) (

and this leads to introduce the invariant scalar product:
o
(2,2") = / Z(HZ™(f)f+ df (!
0

on the space of analytic signals.
A special subclass of (3) corresponds to diagonal kerne
(1] [2] [3] and is written on the half-plane f > 0:

P(t,f) — f2r—q+2 /oo

Z(fMu)Z* (FM—u))p(u) du (t

where A(u) is a positive function possibly submitted to ext
conditions for special purposes.

The general aspect of formula (6) can be changed by sin
ple modifications of the notations. A particular rewritir
has been done in [4] through the trivial change of notation

Au) = A(~u) = é(v)
A(u) + A(—u) = ¥(u)
followed by a reparametrization defined by:

u=¢"1(n)

eZintf(A(u)—A(—u))
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The scientific advantage of the alteration of the original for-
mula (6) has however not be argued.

In the framework of (6), interesting distributions are as-
sociated with the family of functions A given by [1] [5] :

=% 1\ FT
e~ku — |

) = (& ¢
where the index k of the family is a real number. The partic-
ular functions corresponding to k¥ = 0 and to £ = 1 are de-
fined by continuity with respect to the k variable. For & <0,
all corresponding distributions have remarkable localization
properties. In this sub-family the case ¥ = 0 stands out
as the corresponding distribution looks like a multi-purpose
tool. The object of the following is to give a straightforward
derivation of this distribution as a member of the class (6).
This 1s achieved after a systematic study of the properties
of localization and unitarity. Illustration of the use of the
distribution is given through radar imaging applications.

2 Localization

The concept of localization is basically connected to the
transformation group of observers which, in the present case,
is the affine group of clock changes. The study of the trans-
formation properties of the signals under this group leads
to an axiomatic introduction of localization. If an observer
finds a signal 7, (f) localized in time at g or a signal Fy,(f)
localized in frequency at fo, then a different observer using a
different time obtained from the first by dilation a and trans-
lation b must find the same signals localized respectively at
ato+band a=! fo. Since the transformation properties of sig-
nals in clock changes are known, the localization constraints
finally read:

Tato43(f) = ar+le—2i”bf7;o(af) (8)

Mo F o (f) = e BT Fy (af) (9)

Remark that the localization conditions depend on the pa-
rameter 7, i.e. on the dimension of the signal.

To solve (8), we take its derivative with respect to b and
set a = 1,b = 0 in the result. This gives:

a74,(f) _

=) = 9irfT,,

dto (10)

whose solution is 7y, = K(f)e~ %"/t with K an arbitrary
function. :

Then take the derivative of (8) with respect to a and set
againa =1, =0:

AT (f) _ 47, (f)
to—gs,— = (r+ DT(f) + == (11)

Substituting the above form of 7, in (11) and solving the
equations yields the form of the localized signal in time:

(12)

In the same way, solving (9) leads to the localized signal in
frequency:

Zo(f) — f—-r—le—2i7rfto

Fpo(f) = F776(f = fo) (13)

Expressions (12) and (13) are defined up to a complex
multiplicative factor.

A satisfactory representation of these signals in the time-
frequency plane must be of the general form:

Pto(t»f) = T(t)f)é(t_ tO) ; Pfo(t)f) - QS(t»f)é(f_fO)

where the arbitrary functions 7 and ¢ will again be deter-
mined by covariance arguments. The counterparts of condi-
tions (8) and (9) are now:

Paio-*-b(t)f):aqpto(a_l(t_b))af) (14)

Pa_lfo(tvf):aqpfo(a—l(t_b)>af) (15)
Here again the dimensional factor ¢ shows up in the localiza-
tion constraints. The solution to these equations is obtained
as above and reads, up to an arbitrary constant:

Pio(t, fy = f79718(t — to) (16)

Pro(t, £) = £ — fo) (17)

Now that the concept of localized signal is defined both
in f-space and in the time-frequency domain, we enquire
whether any of the affine representations introduced ear-
lier (6) performs a good localization. The results are as
follows:

- frequency localization

The signal Fy, in (13) is represented by Py, given in (17)
provided the function g in (6) is such that p(0) = 1.

- time localization

The representation (6) of signals 73, defined by (12) is of
the form (16) provided the following conditions are satisfied:

(1) u — (AM(u) — A(—u)) is a one-to-one mapping from R
to R.

(i1) the function p is given in terms of A by the expression:

d

() = Q@A) = (Mw) = A=w) | (18)

= pr(u)

We will now restrict our attention to this case and call
the corresponding function Pr(t, f) a localized affine distri-
bution.

Beside general properties previously mentioned [1], [3], the
class of distributions Pr defined by (6) and (18) allows an
interesting time-frequency interpretation of the filtering op-
eration. To develop this point we introduce the relation:

Zr(f) =T(£)z(f)

where the functions Z(f), T(f) and Zr(f) denote respec-
tively a given signal, a filter and the associated output signal.
The dimensional diagnosis of the relation (19) leads to note
that if Z(f) transforms with index r (cf relation (4)) and if
T(f) transforms with index rr, then Z7(f) transforms with
the index r’ given by

(19)

P =r4+rp+1 (20)

In classical applications where the input and output sig-
nals are of the same physical dimension, the index of the



filter must be equal to —1. In the general case of transduc-
ers, however, the index rp may take any real value.

The relation (19) has a direct counterpart in the time-
frequency plane. To show this, we choose a special represen-
tation P, in the class ((6), (18)) corresponding to a given
function A(u), but we do not fix the dimensional indices.
This choice permits to associate the distributions Pz, Pp
and Pz of respective indices ¢/, ¢r and gz with the signals of
relation (19). A direct calculation then leads to the formula:

PZT(t:f):PT(t)f)’;PZ(t:f) (21)
(convolution in time only) provided that the dimensional
indices are connected by the relation

¢ =qr+qz+1

In fact formula (21) is the affine counterpart of a well-known
formula relative to the Wigner-Ville function.

3 Unitarity

The constraint of unitarity or “Moyal property” is expressed
by the dimensionless relation:

[ RnP N A =] (7, 2) P

22)
-/RxR+ ( !

where the r.h.s. involves the invariant scalar product (5)
and where P;, P; are the distributions corresponding to sig-
nals Zy, Z, respectively. Distributions of the diagonal form
(6) may verify this identity provided that a definite relation
exists between their arbitrary functions A and y. A direct
computation shows that this relation is ensured by substi-
tuting to the function p the functional:

o (1) = (WA (=) +1/2 x
(1 X(w) + V(=) [| M@)X (=) + M=) () /2

(23)

As a result, it appears that there exists a large family of
distributions ensuring (22) in the same way that (18) intro-
duced a large family of localizable distributions. This situ-
ation opens the question of the existence of a distribution
which would combine the two properties. Such distributions
are characterized by the identification py = py which, by
use of (18) and (23), leads to the equation:

d _d Au)
0w -A = (55 e

Integrating this equation with the condition A(0) = 1 and
setting A(u) — A(—u) = V(u), we find the unique solution:

V(u)ev(u) .
eV -1’

V(u)
eV(u) — 1

Alw) = A(—u) =

Changing variables from u to @ = V(u) and dropping the
tilde, we finally get:

P(t,f) — f2r—q+2 f_°°oo e2imtfu

i) (55 (o) o

(25)
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This function is the closest counterpart of Wigner’s func-
tion for the case of the affine group. The localization of
chirps on straight lines which occured in the Wigner case is
now replaced by the localization of definite signals (“Doppler
tolerant”) on hyperbolas and the role of the quadratic
Fourier transform is now played by a particular Mellin trans-
form. In fact, those remarks were at the starting point of
the tomographic method [6] [7] used to obtain the form (25).

A fundamental property of representation P is that it pro-
vides a direct geometric interpretation of the Mellin variable
in the time-frequency plane [8]. This feature has allowed the
formulation of a sampling theorem for the discrete Mellin
transform of an analytic signal Z(f). A fast Mellin transfor-
mation has then been developped and applied to the compu-
tation of P as well as of other expressions involving dilations
(e.g. wide-band ambiguity functions and wavelet coefficients
[9] [8} [10]).

The easy implementation of the both localized and unitary
affine distribution P together with its many properties make
it a good candidate for the analysis of wide-band signals
in many situations. Here we shortly describe two different
applications in radar imaging.

4 Delay-Doppler imaging of sto-
chastic targets

An interesting formulation of the delay-Doppler imaging of
random targets has been obtained in [11] in terms of the
Wigner-Ville functions of the emitted and reflected signals.
We rapidly show how this formulation can be extended in
the wide-band case by using the time-frequency distribution
(25).

Consider an incoming signal Zg on a target made up of
point scatterers. After reflection on a particular bright point
of the target, the signal will have experienced a translation &
in time and a Doppler dilation a in frequency related respec-
tively to the position and velocity of that particular scat-
terer. Thus the received signal Zy is of the form:

ZR(f) =D ar+1e—2i1|;beE(af)

where the real number r depends on the physical nature of
the signal (normalization) and the reflection coefficient D is
specific of the target element.

Suppose now that the whole target can be characterized
by a function D(a,b) in such a way that the total received
signal is given by:

Zr(f) = /0 ” /_ ” D(a,b)a e~ %™ Z5(af) dadb  (26)

Moreover, we assume that the function D is random and
can be modeled by a stochastic process D(a, b;w) whose co-
variance is :

E (D(a,b;w)D(a,b';w)) = o(a,b)b(a — a’)s(b - b) (27)

This latter hypothesis simply expresses the stochastic inde-
pendence of the elementary reflectors.

The affine distribution Pg of signal Zgr defined by (26)
is computed using (25) and its expectation value is taken.
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Taking into account (27), we obtain the result:

E(Pr(t, f)) :/ o(a,b)a? Pg(a~t(t — b),af) da db

RxR*

where Pg is the affine distribution corresponding to Zg.
This has the form of a convolution on the affine group and
can be inverted using the Fourier transformation on this
group. It is just an ordinary convolution in time and a kind
of multiplicative convolution in frequency. The interesting
point is that o(a,b) can be recovered from the knowledge
of Pr and Pg only. This conclusion stays in the line of the
result obtained in the narrow-band case [11].

5 Microwave imaging in the labo-
ratory

The study of a radar target in laboratory is founded on the
measurement of its backscattering coeflicient H(f) which is
a function of the illuminating frequency. However various
definitions of this function can be given, depending on the
physical context. In all cases the impinging wave is supposed
to be plane and differences concern only the return wave
which can be assimilated either to a plane, a cylindrical or a
spherical wave. In the first case the backscattering coefficient
is simply defined as the ratio

HP(f) = Eout/Ein (28)
where E;, and E,y; are respectively the incident and re-
flected fields (for definite polarizations). In the two other
cases H(f) is defined by the limits:

He(f) = limpeoV21R (Eout/Ein) (29)
Hs(f) = limpooVaTR? (Eou/Eim)  (30)

where R characterizes the distance between the radar and
the target. According to the case, the square modulus of
H(f) (cross-section) is a scalar, a length or a surface.

An image of the target is defined as a repartition Z(z, f) of
localized bright points reflecting selectively. An explicit for-
mulation of this description can be founded on the study of
the effects of a modification of the basic model by displacing
the points and changing their colors in the transformation:

(z,f) — (az + b,a_lf)

The representations of this deformation on the functions
H(f) and Z(z, f) are obtained by a classical technique of
physical similarity. We obtain:

H(f) — H'(f)=da* e H(af) (31)
Iz, f) — I'(=z,f)= azr“I(a_l(z —-b),af) (32)

where the parameter r takes the values (-1,-1/2,0) depending
respectively on the definitions (28), (29) or (30) of the func-
tion H. The dimensional exponent in (32) is determined by
the constraint

|ty ds = ¢

— 00

The above developments show the identity of the two prc
lems of time-frequency representation and radar imaging a:
lead to write:

I(z, f) = (2/c)Pu(2z/c, f)

P is given by (25) with ¢ = 2r + 1 and r taking the sar
value as in (31)-(32).
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