DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989

4LP - LOM LEVEL LANGUAGE FOR THE LINE PROCESSOR ™ SYMPATI 2

Pascal ADAM - Didier JUVIN - Hassan ESSAFI
Pascal FERNANDEZ* - Jean-Luc BASILLE*

CEA SACLAY - D.LETI/DEIN/SIR 91191 GIF/YVETTE FRANCE
Tél :(1) 69.08.56.26

Laboratoire CERFIA - 50A Chemin des maraichers 31077 TOULOUSE FRANCE
Tél : 61.52.13.52.

ABSTRACT

Image processing can take advantage of line processor structures. We have conceived a language that makes it possi-
ble to program a line processor in a way that eliminates many of the problems previously found when using the non-

conventional structures.

We shall briefly remind the line processor concept and give some details about the structure our two laboratories

are developing in a collaboration.

facilities with some examples. Finally some performances from simulated results will

Then we shall present the programming language facilities and illustrate these

show processing time. This ma-

chine with up to 128 Processing Elements (P.E) has a theoritical power of 10 Mips per P.E.

RESUME

Les structures de processeur ligne sont particuliérement bien adaptées au traitement d'images. Aussi nous présentons
dans ce papier un langage de bas niveau permettant de programmer le processeur Ligne SYMPATI 2.

Ce langage élimine la plupart des problémes de programmation rencontrés en général sur les calcuiateurs paralléles.

Nous rappellerons la structure de SYMPATI 2 calculateur SIMD développé conjointement par le CEA/D.LETI et le CERFIA
Toulouse, avant d'introduire le langage 4LP et enfin nous présenterons les temps de calcul obtenus pour différents

algorithmes.

Ce calculateur pouvant disposer de 16 a 128 processeurs élémentaires a une puissance théorique de 10 Mips par P.E.

1. THE LINE PROCESSOR STRUCTURE

Parallel structures may be considered as VON
NEUMAN variations when duplicating some part of the
so-called Von Neuman structure (BASI85). Among these
different structures that might be involved in an
image processing system, the line processor concept
is a good choice particulary for pixel-level proces-
sing when considering the iconic domain, that is ex-
tracting features from the images (BASI86).

A line processor is a kind of processor ar-

ray, a broader generic term that could include pyra-
mids as well as the more traditional bidimensional
processor arrays.
In accordance with the two fundamental criteria, ef-
ficiency and cost, we have good reason to believe
that the line processor concept is a satisfactory
middle road, particularly if we wish to design a ima-
ge processor not only at a reasonable price, but also
compatible with a personal computer configuration
(BASI86).

A Lline processor exactly matches the linear
structure as shown on figure 1. It also has certain
characteristics that provide more possibilities than
a simple linear structure would offer (BASI87).

Local
Memory

Local
Memory

Local
Memory

¢ ¢ ¢

Processing Processing
1 Element Element —

Processing
Element

Figure 1: The linear structure

Let us present the main characteristics available
in our system.

(i) . We have adopted the helicoidal scheme for
organizing the data in the processing element's memo-
ry.

According to the adressing system taking place in
each processing element, it makes it possible to ac-
cess, either by row or by colum, to any N pixels
segment, where N is the number of processing elements
involved. This data organization preserves the topo-
logical properties of the image. So, two connected
pixels of the 4 adjacency will belong to connhected
PE. This property permit the line processor to work
either by row, either by column without any access
conflict (two P.E will never require a value belon-
ging to the same memory bank).

(o}]

=~

w

874

(ii) . The processor to processor connections
makes it possible to access directly in one cycle to
any point of the 3 x 3 neighborhod when a processing
element processes a pixel of a row or a colum seg-
ment. Furthermore it provides fast access to larger
neighborhods up to 31 x 31.

Each processing element comprises two parts :

. addressing,

. processing.

The addressing system transforms the relative
Euclidean coordinates of the row/column segment to be
processed, into memory addresses for the considered
pixels. So the data organization is transparent to
the user. This addressing system also includes a mas-
king module, which is very useful when only a window
of the image is to be processed.

The processing part is more classical. It
consists of a 16 bit wide ALU, a multiplier, a shif-
ting module, a 16 bit registers Scratch-pad and an
indicator set for the conditional sequences.

The different data paths make it possible for
each processing element to access data in its neigh-
bor's memory up to a distance 2 , or in the neigh-
bor's scratch-pad, up to a distance of 3, right or
left.

An independant data path is rese~ved for in-
put/output operations.

2. DESCRIPTION OF THE PROGRAMMING ENVIRONMENT

One major difficulty for user with the non-
conventional structure is the way to program it. Let
us present now the language that we have conceived in
order to eliminate such difficulties.

4LP is a low level language developed‘for the
command unit with its own instruction set, some ins-
tructions are directly executable by the processing
elements, others are executable by the command unit
itself for the parallelism management. ,

Due to the SIMD structure 4LP is also a high-
ly parallel language. Furthermore it makes it possi-
ble to focus one's attention on the job to be proces-
sed on one pixel. This job will be automatically pro-
cessed for all the pixels of the considered window,
in any of the scanning modes presented below (figure
2 - 3).

[Z0) #AC2ESSTIFS ELEMENTS SEGHENT

[y Ll wwn U ave (] asen]

(e - P — 4 f—1 -

N : : b .
=l

€041 SEGHENT g £oM SEGHENT

LHIEAR SCANNING CAD SCRAING

l @

scanning node
direction

figure 3!

=
) SERS
['DD"" AL Lext 4
[. S é :;: coLum SEGWNT T
D-ﬂ:“' 7; é__‘ BAID SCAEITIG
FIGURE 3 1 SIFFERENT SCAIMITING HOGES
figure 4 :

3. PRESENTATION OF 4LP
The basic program structure is the following one :

PROG Name; /* comments BLOC structure
- . EXTERNAL LOOP
Instructions;
. BLOC 1 Instructions;
Instructions; .
- INTERNAL LOOP
BLOC k .
Instructions; Instructions;
sTOP; LEND;

A 4LP program consists of PROG fol._loued by a name
and a semi-colon, lists of instructions, BLOCS, and a
STOP directive followed by a semi-colon.

One BLOC consists of a LEXT (EXTERNAL LOOP) direc-
tive followed by an instruction list, a LINT (INTER-
NAL LOOP) directive an other instruction list and fi-
natly an LEND (END of LOOP) directive (figure 4).

LEXT, LINT are the command unit directives .for the
external and internal scanning loop start control,
respectively.

LEND is the command unit directive for the end of
LEXT and LINT loops (figure 4).

The number of blocs is unlimited. Initialization
of the following parameters (images, windows, scan-
ning, ...) can't be modified inside a micro-program.

THE DIFFERENT KINDS OF INSTRUCTIONS

- ELEMENTARY INSTRUCTION

. NOP : NO OPERATION

- BRANCH INSTRUCTION : GOTO (COND) LABEL
. CONDITIONAL INSTRUCTION

These instructions are all executed in a cycle of
120 ns.

THE ELEMENTARY INSTRUCTION

It consists of one destination, an ALU function,
0,1 or 2 operands, an optional indicator set up.

The functions are the usual logic and arithmetic
ones, as well as the multiplication.

There are 4 binary indicators that may memorize
one ALU flag.

The principal destinations are the following ones :

- A PE's personal scratch pad register.
$0.8P,...,S7.SP (8 bit registers)
D0.SP,...,D3.SP (16 bit registers)
X0.SP,X1.SP(16 bit)

- A PE's personal memory.

- A PE's special register for the addressing part.

- The ALU latch.

The principal operands are following ones :

- A scratch pad register belonging to either the PE,
either one of its neighbors at a distance 1, 2, 3.
. S0.SP -- PE's scratch-pad register.
. S0.Li -- left neighbor PE, distance i = 1,2,3.

. S0.Ri -- right neighbor PE, distance i = 1,2,3.

- A memory belonging to any PE, at a distance right
or left up to 2.

- A constant value given by its address in the
Command Unit memory.

- The ALU Latch

Memory description

Each PE may only write in its own memory. De-
pending on the memory organization (helicoidal or ta-
bulated mode), the syntax is different.

1.) Tabulated mode :

Each PE has a special register named INDEX
which contains the address of the memory value in a
tabulated memory organization
EX : S0.SP = TAB _ the memory value at the address
pointed by INDEX is Loaded in the S0.SP register.

2.) Helicoidal mode) :

In this mode the

i a1ls MeC e,

segment propagation is mana-

af
ged by the command unit A
(LEXT and LIND instruc- ajnie]e I)
] 5 4
tions). For each segment po- B o))
sition,

we access to any
pixel by giving its relative
coordinates i, i.

A PE can read any pixel value (except that i,
j are limited to (+ 31). Due to the architecture, a
direct memory transfer is possible between two PE if
the distance is +1 or +2. This is very usefull becau-
se most of the time the PE asking for a pixel value
is not the one which belongs it.

. -

IMA.n® [&1,4j1

Example of an elementary instruction :

S0.SP, L = AND M1.0 (-3, +3), L 10 =
$0.SP and the Latch (L) receive the result of the AND
function between the LATCH value and the pixel (-3,
3) of the image number 0 window type 1. The indicator
Io is set according to the Carry ALU flag.

This instruction is executed by all of the PE
at the same time in 120 ns.

The BRANCH Instruction 60TO (cond) LABEL

(1) Branch when all PE's indicator selected are set
up.

(2) Branch when any PE's indicator selected is set
up.

(3) Unconditional branch.

example :

AO : SO.SP, L = MINUS M1.0¢0,0),L 11=GT;

GOTO AD ALL1 ;

The first instruction (with A0 Llabel) sets up I1 ac-
cording to the GT flag of the result. The second one,
tests the I1 indicator of each PE and if they are all
set up, branches to AC again.

CONDITIONAL INSTRUCTION

$0.SP=ADD S0.SP, L /10 ;
This instruction will be executed only by the PE
which indicator 10 is set up, the other one will exe-
cute a NOP instruction.

PRESENTATION OF A SIMPLE NOTION EXTRACTOR
PROG MOTION; /* Motion extractor

/* Image 0, image 1 contain the same scene at
/* different times.

$0.SP = 16 ; threshold of binarisation.
/* scamning loops
LEXT;
LINT;
/* pixel (0,0) of the 1st --> LATCH
L = M0.0(0,0);

/* difference between the pixel (0,0) of the
/* 2d. image and the latch, 10 is set up on the
/* sign of the result.
L = MINUS M0.4¢0,0), L 10 =
/* in case of negative value, storage of inverse.
L = COMP L /10;
/* Tresholding and storage in the image 1.
L = MINUS SO.SP,L IO = S;
M0.1(¢0,0)= MINUS1 /10;
M0.1¢0,0)= NUL /NOT 10;
/* end of scanning loop.
LEND;
/* shrinked image (3x3 neighborhod)
LEXT;
LINT;
/* AND (pixel value)

L = M0.1¢-1,1);

L = AND MO.1 (0,0) L
L = AND M>0.1(-1,0) L7
L = AND M>>0.1¢-1,-1) L
L = AND M>0.1(0,-1) ,L;
L = AND MO.1¢1,-1) .L;
L = AND M<0.1(1,0) Li
L = AND M<<0.1¢1,1) L
L = AND M<0.1(0,1) L

/* storage of the AND result in image 2
M0.2¢0,0) = L ;
LEND;
/* Dilatation of the shrinked image
LEXT;
LINT;
/* OR (pixel value) (3x3 neighborhod)

L = M0.2¢-1,1);
L = OR M0.2(0,0) L;
L = OR M>0.2(-1,0) ,L;

le WA}

876

OR M>>0.2¢-1,-1)
OR M>0.2¢0,-1) '
OR MO.2¢1,-1)
OR M<0.2(1,0)
OR M<<0.2(1,1)
OR M<0.2(¢0,1)
/* storage of the OR result in image 3
M0.3(¢0,0) = L;
LEND;
/* XOR between shrinked and dilated images to get /*
the edges of objects in motion.
LEXT;
LINT;
L M0.2(0,0);
L XOR M0.3(0,0) ,L:
M0.5¢0,0) = L;

I
~
~

-

rrmrr
nm uw nn
.~ . o=
Lo Sl Y) S et
~a W owe

~

LEND;
/* End of program
STOP;

Up, middle : images of the same scene.
Down : edges of objects in motion.

4. ALGORITHHS AND RESULTS

The prototype of the machine will be available by
June 1989. We allready have the com
plete development enviromment including the compi
ler, desassembler, debugger and the simulator giving
the exact computing time that will be required on the
machine.

The algorithms, which results are presented now,
have been simulated.

Results on 256x256x8 images.

ALgornithm : 37PE : 128PE
Thresholding : 1,2ms : 0,4 mb
Local variance : 14,5 ms ¢ 3,6 ms
Convolution 3x3 : 5,3ms 1,3 ms
Local minimum s 4,5 ms 2 1,7 ms
Motion extracton : 9,2 ms : 2,7 ms
Reducition 256%-> 128" :+ 7 ms : 6,1 ms
Aial symetrie : 10,8 ms : 9,3 ms
(horizontal axe) : :

5. CONCLUSION

We tried to show that 4LP is relevant for the
pixel level processing. It provides an easy way for
programming any algorithm operating on a window up to
31x31 without taking care of the data organisation.

The results obtained as for now lead to a very fa-
vorable efficient cost/ratio.

We reach the Quality factor of 6 for the Abingdon
Cross Benchmark (Preston Kundall - CARNEGIE MELLON
University) this is the best evaluated class for
existing multi-processor machine.

We used YACC and LEX UNIX compiler development
tools to write the 4LP compiler (kerni86).

6. REFERENCES

- (BASI85) BASILLE J.L., CASTAN S. - Multilevel ar-
chitectures for image processing. 2nd Int.

Tech. Symp. on Optical and Electro-Optical Applied
Science AND Engineering. Cannes 2-6 décembre 1985.

- (BASI86) BASILLE J.L., DALLE P., CASTAN S. - Iconic
and symbolic use of a line processor in Multilevel
Structures. In : Duff MJB ed.

Intermediate level image processing. London :
mic Press.

- (BASI87) BASILLE J.L., JUVIN D., ESSAFI H., LATIL
J.Y. - Caractéristiques Architecturales d'un proces-
seur ligne pour le traitement d'images, 6éme Congrés
AFCET RFIA, Antibes 16-20 novembre 1987.

- (DUF81) DUFF M.J.B. and S. LEVIALDI - Languages and
Architectures for Image Processing, ed. by authors,
Academic Press, 1981.

- (KERNIB6) KERNIGHAMN B., PIKE R. - L'environnemnt de
programmation UNIX, IIA ed. Inter Edition.

Acade-

