DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989 ai\/

DATA-DRIVEN ARCHITECTURES FOR IMAGE PROCESSING.

M. P. Eilkendal, F van der Hel jden.

Twente Unliversity
Department of electrical engineering (BSC),
Postbox 217, 7500 AE Enschede, The Netherlands.

RESUME

Une architecture pour Ile
dataflowprocessor a été realisée.

traitement
La performance est determinée avec des

d’images avec le NEC uPD7281

algoritmes primitives (convolution etc.). Le traltement d’images en temps réel
est possible tant quelques restrictions sont toujours imposés.

SUMMARY

The NEC puPD7281 dataflowprocessor 1s well sulted for application in a low-cost

multl processor image processing

system. When used in a ring structure

however, the transport capacity of the ring limits the processing power of the
system. This limitation is solved by using a number of processor rings in
parallel. The performance of the resulting hardware is evaluated using some

basic image processing algorithms.
Is possible.

1. Introduction.

A cruclial point in the design of image processing
architectures 1is the trade-off between throughput
and flexibility. A possibility to cover both aspects
is the use of a number of fast general purpose
signal processors 1in parallel. Such .a parallel
archltecture can be reallized in a compact way and at
low cost using the NEC pPD7281 dataflowprocessor.
This processor is based on a data-driven
architecture. In conventional von Neumann processors
operations are executed in a predefined sequence,
following an operation 1list (control flow). 1In
contrast to thls an operation in a data-driven
system 1s executed upon arrival of the I1nput data
for this operation, so the operation sequence 1is
defined by the data dependencies between the
operations. Hence dataflowprograms . are usually
described by a flowgraph: a directed graph where the
nodes denote operations and the arcs denote data
dependencies between these operatlions. Data values
are carried on tokens that flow along the arcs. When
a token 1s avallable on each input arc a node is
executed and a token containing the result data is
produced on the output arc (figure 1).

In the pPD7281 dataflowprocessor, the program 1is
stored In two memories (RAM): the 1ink table,
containing the data dependencles i.e. the arcs of
the flowgraph and the function table, containing the
operations (figure 2). A third memory, the data
memory, is used for storage of tokens until the
second token for a two input node arrives and for

To some extend real time 1mage processing

—n
—c
«—o0

o

ADD ADD

Figure 1. An example of a flowgraph: computation of
(a + b) ¥ (c +d).

storage of program variables. The token matching and
the address generation for the variables Iis
controlled by the address generator & flow
controller. The three memories, the processing unit
and a queue are placed in a circular pipeline. This
pipeline can be passed In 7 cycles of 200 nsec each
when the queue 1is empty (10 MHz. clock). All
instructions with a single output token are executed
in one pipeline cycle. This includes powerful
instructions as a multiply instruction and a
multiple bit shift. The queue 1is added because
instructions with multiple output tokens take more
than one pipeline cycle.

For communication between the pPD7281 and 1its
environment, a token input bus and a token output
bus are available. Through these 16 bit busses, the
32 bit tokens are transported 1in two steps. As the

830
< PU e _J
> LT FT +—>] DM |—] Q
AG&FC 0Q
1
IC token bypass o oo
2 1
token token
input output
PU = processing unit AG&FC = address generator
LT = link table & flow controller
FT = functlon table IC = input controller
DM = data memory 0Q = output queue
Q = queue ocC = output controller

Figure 2. The internal structure of the pPD7281.

format of the processor input tokens, the processor
output tokens and the tokens leaving the processing
unit is the same, processors can easlly be cascaded.
To enhance the possibilitles for cascading
processors, a token bypass between the input
controller and the output controller 1is added.
During reset a 4 bit module number is assigned to
each processor. The Input controller sends tokens
with a matching module number to the link table. All
other tokens are passed directly to the output
controller. ’

2. The basic architecture of a flowprocessor system.

As mentioned before, processors can easlily be

cascaded. A processor-ring offers the possibility of

communication between all processors. Two other
units needed in this ring are:

- A host interface for downloading the
dataflowprogram by sending speclal table-write
tokens and for data input and output.

- A memory interface. The data memory of the uPD7281
Is only 512 words. This 1is insufficient for most
Ilmage processing so external memory must be added.
This memory can be accessed by sending memory READ
or WRITE tokens to the memory interface.

NEC has developed a chip for these functions: the

MAGIC (memory access and general bus interface
chip). Furthermore the MAGIC has provisions for
adding a DMA-controller through which the

flowprocessors can access the host memory (figure
3).

memory
DMAC (M)

18| grlte:
$ <2, MWord/s

1 ad:
HOST « 5 .52 orass

<1.25 HHord/s MAGIC
2.5 HToken/s
proc.| _ _ _ _ [proc.
1 n

Figure 3. The basic architecture.

The performance of this architecture is limited by
three factors:

-~ The processing power of a processor. It 1is
possible to overcome this limitatlion by increasing
the number of processors (maximal 8).

- The transport capacity of the Iinter-processor
network. This network iIs used by all processors to
access the external memory.

- The transport capacity of the host interface. Data
transport is under flowprocessor software control.
This 1imits the transport capaclty (1.25 MWord for
host - external memory, 0.8 MWord for external
memory -3 host).

In the next paragraph the effect of these

limitations on the performance of the basic

architecture 1is evaluated using some basic image
processing algorithms.

3. Performance of the basic architecture.

The performance of the above architecture is
evaluated using the following Image processing
algorithms:

-~ histogram. Computation of a 8 bit histogram of
pixel values. The histogram 1s stored in the
flowprocessors data memory and the input image in
the external memory.

- monadic operation. The value of a pixel in the
Input image is transformed to a value of an output
pixel using a look up table in the processors data
memory.

—- dyadic operation. The value of the output pixels
is the result of an operation on the corresponding
pixels in two input images.

- convolution I. A fast algorithm optimized for a
3x3 convolution kernel.

- convolution II. This algorithm 1s not as fast as
the first convolution but its kernel size can be
varied to a maximum of 13x13.

Two approaches to run these algorithms on more than

one processor are avallable:

- Algorithm partitioning: each processor performs a
part of the algorithm on all input data.

- Data area partitioning: each processor performs
the entire algorithm on a part of the input data.
The first approach asks special attention for
balancing the tasks of the processors to acquire
optimal use of all processors. Besides this, some
synchronization between the processors is needed to
prevent overflow in the processor with the heaviest
task. Hence the second approach is chosen for the
above algorithms. This approach Is well suited for
image processing as many algorithms perform the same
operation on each pixel. No synchronizatlion between
the processors 1s needed and the processing power of
the system 1ls to some extend proportional to the
number of processors in the ring. In table 1 the
execution times of the first four algorithms
measured on a single processor are glven (256 x 256
images). These times can be divided by the number of
processors in the ring to obtain the execution time
for the overall system. However the number of useful
processors in the ring is limited by the capacity of
the Inter-processor token ring. The minimum
execution time due to this 1limitation is given Iin
the third column of table 1. It is estimated from
the number of tokens sent to the MAGIC for image
memory access. A memory read token requires in
general one token and a memory write two tokens. For
example the convolution algorithm reads a column of
3 pixels from the input image for each output pixel
so 5 tokens are sent to the MAGIC per pixel. This
occuples the token ring for 2 psec per pixel or 130
msec for the entire image. Comparing thls value to
the execution time for one processor leads to a
maximum number of 7 wuseful processors for the
convolution algorithm. The values for the other
algorithms are estimated in a similar way (table 1).

Table 1. Execution times on a single processor and
on an optimal number of processors for
256 x 256 Images.

executlion minimal number of
operation |time 1 proc. ex. time useful
(msec) (msec) processors
histogram 150 26 §
monadic op. 200 78 3
dyadic op. 290 104 3
convol. I. 800 130 7

The above execution times are measured during
program execution on the actual hardware. A method
to obtain the executlion time of an algorithm in an
earller stage of program development is demonstrated
for the convolution 11 algorithm. The execution
times of this algorithm are estimated using the
following formula:

N t
t =a* °
ex »
e, n
with
N2 = image size i.e. the number of pixels.
n = number of processors.
t = pipeline cycle length (200 nsec at 10 MHz.).
e’ = Link Table efficlency i.e. the percentage of

~
-

time the Link Table 1is used. Simulations show
that the LT efficiency is almost independent of
the kernel size (e = 80 * 5%).

a = number of tokens passing the Link Table per
pixel. This value can be derived from the
flowgraph by counting the number of output
tokens per node. For a p x p convolution
kernel:

a = 3p2 + 8p + 30

Substitution using N = 256 results 1n:

t = (3p2 + 8p + 30) * -lg;} (msec)

ex
In general a well organized program will have a LT
efficiency between 70% and 90% so without simulation
an acceptable indication of the executlon time can
be derived directly from the flowgraph.

For each pixel in the output image, a column of p
plxels is read from the input image and one pixel is
written. This results in a minimum execution time
due to the transport capacity of the token ring:

t = (p+2) *N *400 (nsec)

min
Comparing this value and tex results in 10 useful
processors for p = 3 and even more for p > 3. The
1imiting factor for the convolution I1 algorithm
never 1s the transport capacity of the token ring as
the maximum number of flowprocessors in combination
with the MAGIC is 8.

Besldes the convolution II algorithm the above
figures show that for relative simple algorithms the
transport capacity of the processor ring is the
limiting factor. Hence the number of processors per
ring in a general purpose image processing
architecture should be limited.

Apart from the capacity of the token ring, another
reason exists to 1limit the number of processor in
the ring. In general a memory access requires two
tokens to be sent to the MAGIC. When two or more

o

Table 2. Execution times for the convolution II

algorithm (4 processors, 256 x 256
images.
kernel size LT tokens execution time

pPXp a tex (msec)

3x 3 81 332

S5x 5 145 594

7x 7 233 954

9x 9 345 1410

11 x 11 481 1970

13 x 13 641 2630

processors are accessing the memory at the same
time, care should be taken to prevent the memory
access tokens of both processors from getting mixed
up. The MAGIC has provisions to make the
simul taneous memory access of maximal four
processors possible so if more than four processors
are used, the memory access of these processors must
be synchronlized by software.

As adding more processors in a ring offers no
general appllicable solution to increase the
processing power another alternative is given in the
next paragraph.

4. Processor rings in parallel.

As demonstrated above the processing power of the
ring is limited 1n some applications by the capacity
of the pPD7281 input/output busses. The only way to
overcome this limitatlion is the use of a number of
these busses In parallel. Thlis can be realized
without leaving the processor ring concept by using
a number of processor rings parallel. To prevent the
access to the external memory from becoming the
limiting factor, each ring should have 1Its own
(local) memory. A shared memory can be added for
communication between the rings and for distributing
the input and the output data. To realize this
parallel ring architecture, a VME compatlble
processor board is developed (figure 4). This board
conslsts of:
- 4 flowprocessors.
- a VME interface with
interrupter facilitlies.
- "local" memory (1M x 18).
~ an interface to a speclial bus through which a
number of processor boards can be connected to
shared memory.

DMA~controller and

dataflow bus

!

v dataflow-
M bus
E interface

VME
b interf. 1M x 18
u local

—> +
s DMAC l memory
—
MAGIC
proc. proc. proc. proc.
L’1 2 3] a

Figure 4. A VME-compatible dataflowboard.

832

The processor board can be used as a stand alone
board to Increase the processing power of a VME
system, but 1t is also possible to combine several
boards together with a shared memory and for
instance a dual ported Ilmage memory (figure 5). The
addltion of the dual ported image memory solves the
third 1llmitation of the basic architecture: 1t is no
longer necessary to use the relative slow host
interface for image data transport.

video data
shared dual ported
memory memory

I l

dataflow bus

i ?

processor- processor-
board 1 board N

VME bus

Figure 5. A realization of a flowprocessor system
with parallel processor rings.

S. Real time image processing.

When the data partitioning method is used to divide
the algorithm over the processor rings, processing
power is proportional to the number of rings. In
table 3 the execution times for the four algorithms
mentlioned before are glven for a single processor
ring with four processors. This leads to the number
of rings (R) needed for real time image processing
in the last column of the table (40 msec / image).

Table 3. Number of rings needed for real time
image processing (N = 256).

execution time R for
operation single ring real time
(msec) operation
histogram 26 1
monadic op. 78 2
dyadic op. 104 3
convolution I 200 5

The maln disadvantage of the above architecture is
the fact that additional transport between the
different memorles can serliously degrade these
figures. The transport capaclty of the dataflowbus
1s determined by the relative low speed of the MAGIC
memory Interface and some overhead for the bus
arbitration. Distribution from the image memory to
the local memorlies of the different rings takes as
much as 50 msec so together with the collecting of
the result data about three frame times are used for
data transport. Hence to perform real time image
processing a hardware distribution system should be
added. Two reallizations for this system are:
- For each ring an image memory with facllities to
select a part of the total image from the video
bus.

- A token based distrlbution system similar to the
inter-processor token ring. Using a speclal
interface with FIFO buffers 1n each processor ring
the required speed for real time image processing
comes within reach.

6. Conclusions.

A flowprocessor archlitecture consisting of a number
of parallel processor rings with hardware
distribution of video data is capable of performing
real time image processing algorithms. Using the 10
MHz dataflowprocessor the image size is limited to
256 x 256 but when the new 20 MHz. CMOS verslon is
used real time processing of 512 x 512 Iimages will
be possible. This 20 MHz. ©processor will be
available soon.

The above image processing algorithms can of course
also be performed by dedicated hardware such as a
convolver and a two dimensional 1look up table.
However as general purpose signal processors are
used the applications are not limited to low level
image processing algorlthms. These algorithms are
merely used to demonstrate the processing power of
the architecture. Other applications are for example
high level 1mage processing and matrix operations.

7. Acknowledgements.

The authors would 1like to thank L. Pieloor, A.
Hui jgen and W. Siteur for their contribution to this
project.

B. References.

[1] Arvind, D. E. Culler, Dataflow Architectures,
MIT / LCS / TM-294, Massachusetts, 1986,

[2] A. Huljgen, Design of a data-driven computer
architecture for local neighborhood operations,
Twente University, Enschede, internal report
88V022, march 1988,

[31 Product description pPD7281 and pPD930S, NEC
Electronics Europe, Dusseldorf, 1986.

