DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989 L/

oud

ASIC ARCHITECTURES FOR DIGITAL SIGNAL PROCESSING
IMPLEMENTATION

Stewart (. Smith, Ralph W. Morgan
and Julian G. Payne

VLSI Technology e.u.r.l., Les Taissouniéres, Route des Dolines,
Sophia Antipolis, 06560 Valbonne, FRANCE

RESUME
Nous décrivons une architecture générique de type “pipe-line” appliqueé aux circuits de traitement
numérique du signal a haute performance. La méthode présente de nombreux avantages dans le
cadre de la réalisation d'un ASIC. Cette approche se préte bien & 'automatisation de la conception et
résulte en une realisation rapide de machines performants dedieés au traitement numérique du signal.
implémentant une grande variété de fonctions et de débits.

SUMMARY
We describe a generic pipeline architecture for high-performance DSP, which has important
advantages when coupled with ASIC technology. This approach is highly amenable to automation,
and allows the rapid implementation of efficient, dedicated DSP machines over a wide spectrum of

functional and throughput requirements.

Background

In recent years, IC implementation capability
has greatly increased. This is due to advances
on three main fronts: IC process technology,
computer-aided design (CAD) and architecture.
The ASIC industry has emerged to take
advantage of this situation, and the possibility
now exists to integrate, in rapid timescales,
impressively complex algorithms in silicon.
DSP stands to benefit enormously from these
developments, as the complexity of DSP
applications always seems to push the limits of
current technology [1]. Yet, for mostly historic
reasons, DSP has been associated with the
high-performance sector of the computer
industry. We now find that most CAD for
DSP is targetted not at hardware, but at
software which runs on DSP microcomputer
chips.

These parts are flexible, cheap and
well-supported, and each new generation has
improved processing power and design aid.
Often programmability is the key to a
product’s success, for instance modem
hardware which must conform to the present
and future communications standards of many
different countries. But the perception of DSP
design as a software problem has grown out of
proportion. With the emergence of ASIC
technology, designers have more power than
ever to implement ideas directly in silicon.
Thus we expect to see a growing requirement
for dedicated DSP machines, in particular to
address the processing bottlenecks at the heart
of many DSP algorithms, which make them
impossible to exploit by conventional means.
Although parallelism and pipelining are
well-known ways to overcome these problems,
the inclusion of programmability severely
compromises these techniques.

806

Admirable implementations of DSP algorithms
in silicon, which use special-purpose
architectures, are often reported. However the
CAD tools used to realise these devices are, by
modern standards, fairly low-level. The final
results may be impressive, but in the absence
of architectural assistance from the tools,
design cycles are long. It must be recognised
that DSP has its own requirements, and
although it is able to benefit from the
enormous investment in computer technology,
DSP differs fundamentally from mainstream
computer design. Before the common view of
DSP machines as high-performance
microcomputers can be seriously challenged,
DSP-specific CAD must evolve to as high a
jevel as computer-industry CAD, offering a
complete algorithm development environment
and an effective architectural means to exploit
the parallelism inherent in the application. We
have some ideas as to how this might be done.

\

Exploiting Parallelism

Parallelism exists at the heart of all DSP
applications. Even the most unstructured,
data-dependent algorithm can exploit
parallelism at bit-level (and we would probably
recommend the data-path approach for many
of these). However most DSP algorithms
support concurrent execution of multiple
operations, and our methods are most effective
when this is the case. We construct processors
in the form of a dedicated network of
arithmetic operators [2,3], not an ALU.

Our approach reliess on decomposing
computation and communication structures
down to a fundamental space-time
building-block, which we call a ‘grain’. The
grain is a gated full-adder, which processes one
bit per clock cycle. Bit-level pipelining allows
high clock rates and fine quantisation of the
parameter space, so that resources may be
closely matched to requirements. An example
of this is in tuning for throughput, where two
essentially unrelated quantities - task rate and
max. internal clock rate - must be reconciled.
The former is application-dependent and the
latter is technology-dependent. Our matching

2y

mechanism involves coarse (hence easy)
decisions on task- and word-parallelism, and
fine decisions on bit-parallelism.

We require the overall problem to be
partitioned so as to isolate a ‘core’ processing
task, and the structure, in terms of data flow,
of this task must be clear. Then a time budget
(in clock cycles) may be assigned to the task.
The amount of bit-parallelism is chosen so that
the appropriate number of bits (known as the
working word) are processed in the task period.

We use two forms of bit-parallelism, one of
which is global and affects maximum clock
rate, and the other of which may vary locally
and has no effect on maximum clock rate [2,3].
This widens the space of possible solutions.
Whereas a bit-serial word [4] is transmitted on
a wire, a digit-serial subword is transmitted on
a pipe (i.e. a cluster of wires, one per bit). As
digits [5] consist of several bits, the processing
budget of bits/task may be increased almost
linearly by digit size. The
combination of bits (separated in space) and
digits (separated in time) described above
forms a subword, and multiple subwords
(separated in both space and time) form the
full working word.

increasing

MSD LSD

Space
] LsSB
bit
MSB

digit subword

- HEEEE
HERHA

MSS

colclals

Time

Figure 1: word structure

These word structure attributes are illustrated
in Fig. 1. Here a 30-bit working word
propagates on 6 wires in 5 clock ticks, where
the 6 wires carry three 2-bit digits. The data
resident in the working word may be
manipulated, for instance to make an arbitrary

define corner-turning as the mapping of a time
index on an external bus to a space index in
the processor schematic. Given a correct icon
schematic, an interface schematic and sensible
guidelines, we are able to synthesise a
close-to-optimal realisation of the circuit.

This is achieved by propagating all word
structure and format attributes through the
network, checking and maintaining consistency
throughout [2]. Each actor (the functional
equivalent of an icon) has a default action on
every attribute. Synthesis procedures attempt
to maximise the use of the dynamic range
inherent in the specified working word.

Estimation

We allow the user to alter various aspects of
the design, either globally (by altering global
attributes) or locally (by overriding default
actions). We provide physical and numerical
estimators [2,3] to provide informational
feedback on the effects of any changes.
Estimates are static checks, and are therefore
instantaneous. This obviates trial layouts and
long functional simulations in the early,
exploratory phase of the design process.

Estimators are of two types: physical and
numerical. By reading word attributes and
counting the number of grains implied by the
icon schematic, we may accurately estimate
area, costs. Power consumption may be
estimated using known clock rates and activity
factors. Numerical estimation ~attempts to
highlight problems at both ends of the working
word. At the low end, the intrusion of
quantisation noise is estimated using simple
statistical assumptions, and at the high end
word growth and hence the possibility of
overflow is estimated using statistical
assumptions along with a user-supplied ‘growth
factor’.

Conclusions

We have shown that the automated design of
parallel /pipeline machines is greatly simplified

in the fixed-function case, and have argued
that a sizeable proportion of dedicated DSP
applications need no programmability in the
high-performance, ‘bottleneck’ section of the
system. The acceptance of the flexibility
limitations of pipeline machines is also the key
to the rapid and successful synthesis of efficient
fixed-function machines from a simple
blueprint, with minimal control overhead.

The small grain sizes yielded by deep pipelining
allow design parameters to be finely-quantised,
which in turn leads to the efficient tailoring of
resources. At the same time, the ability to
allocate resources efficiently over a wide
parameter space allows synthesis techniques to
be applied at all but the highest levels of
abstraction, freeing the DSP systems designer
to concentrate on the things he does best.
Thus efficient architectural solutions to DSP
problems may be produced in rapid timescales.

References

1. J. Allen, “Computer Architecture for Digital
Signal Processing,” Proc. IEEE 73 pp. 852 - 873
(May 1985)

2. S. G. Smith and R. W. Morgan, “High-level DSP
ASIC Design Tool,” Proc. EURO ASIC 89 pp.
117 - 129 (Grenoble, France, January 1989)

3. S. G. Smith and R. W. Morgan, “Generic ASIC
Architecture and Synthesis Scheme for Digital
Signal Processing,” Proc. I[EEE JCASSP89,
Paper 10V1.9 (Glasgow, Scotland, May 1989)

4. P. B. Denyer and D. Renshaw, VLSI Signal
Processing - A Bit-Serial Approach,
Addison-Wesley (1985)

[

R. I. Hartley and P. F. Corbett, “A Digit-Serial
Silicon Compiler,” Proc. 25th ACM/IEEE DA
Conj. pp. 646 - 649 (Anaheim, CA, June 1983)

6. S. G. Smith and P. B. Denyer, Serial-Data
Computation, Kluwer Academic Publishers (1988)

7. R. Jain et al.,, “Custom Design of a VLSI
PCM-FDM Transmultiplexer from System
Specifications to Circuit Layout Using a
Computer-Aided Design System,” J. IEEE SC-21
pp. 73 - 85 (February 1986)

808

amount of product bits visible at the output of
a multiplier. Local accuracy requirements may
be met in this way. Fig. 1 shows a 16-bit data
word (black) with 8 trailing zeros (dotted),
resident in the 30-bit working word.

The acceptance of the limitations of pipelining
allows arbitrary word-decompositions, in
contrast to the conventional datapath
approach, with its large grain-size and
inflexible data format. Further flexibility may
be introduced by multiplexing (feeding one
processor from several sources) and/or
duplicating (feeding several processors from one
source), thus effectively compressing and/or
expanding the task period in relation to the

processor ptﬂﬁ(ni.

data in coef in
cell boundary
o I
input [| sutput
: HProcessor—
register < array register
bank '~ bank
[lI J
sample clock
clock & control
data out *:;\\//;7

Figure 2: architectural template

Architectural Template

These decompositions oceur inside the cell;

from the outside it appears like a datapath,
communicating along conventional bus-based
lines. We call the external part the
parallel domain. All compiled processors obey
the architectural ‘template’ or ‘blueprint’
illustrated in Fig. 2. Input data arrive in
sequence on a bit-parallel bus, and load up the
register bank. When this process is complete
and the register bank is full, the data block is
transferred into the serial domain and
transmitted, using the appropriate
word-structure, through the processor. The
register bank immediately starts filling up with
the operands for the next computation.

Results are captured in the output register
bank, are transferred back into the parallel
domain, and depart the register bank in
sequential fashion. We refer to the process of
transferring between domains as
corner-turning. In the (usual) case where
multipliers are programmable, coefficients
arrive in sequence on dedicated buses. All
multipliers are ‘serial/parallel’ [6], so no
forward transmission of coefficients is required
once loaded. As algorithm structure is
naturally reflected in the data flow, control
requirements in both parallel and serial
domains are minimal.

esign Synthesis

One of the cornerstones of our approach is the
conceptual separation of structure, throughput
and accuracy in the design process. We intend
the user to be able to concentrate on these
issues one at a time, carrying the minimum of
low-level mental baggage. This separation
illustrates one of the fundamental differences
mentioned earlier; throughput and accuracy
requirements are inherent in DSP applications,
and their specification is as important a part of
the design process as that of processor
function. While computer software function
can be well-defined, throughput and accuracy
are invariably a by-product of the design
process, not an integral part of specification.

The wuser requires to have identified a core
‘task’ in the application, which needs dedicated
hardware for execution. The structure of the
processor is explicit in the icon schematie; we
believe that, despite some limited success to
date in DSP behavioural synthesis [7], a
high-level structural interface is adequate for
most users.

By filling in a simple menu sheet, the user
assigns values to some important global
‘guideline’ attributes. .These include the task
rate (the number of times the machine must
perform its task per second) input precision,
and workspace (the expected working
precision). Interface specifications are captured
via menus, the main purpose here being to

