DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989

A METHODOLOGY FOR ASIC IMPLEMENTATION
OF DIGITAL FILTERS

U. Sjostrdm, 1. Defilippis, M. Ansorge, F. Pellandini

Institut de Microtechnique, Université de Neuchétel, Rue A.-L. Breguet 2, CH-2000 NEUCHATEL, Switzerland

RESUME

Les remarquables progrés rencontrés dans les technologies VLSI ainsi que le hombre croissant des domaines
d'application faisant appe! aux signaux numériques ont créé des besoins pour de nouvelles méthodes de con-
ception de circuits intégrés spécifiques (ASIC) dans le domaine du traitement numérique du signal. Cet article
présente une nouvelle méthodologie sous la forme d'un systeme de conception a répartition verticale, avec un
choix approprié des classes d'algorithmes de filtrage, un développement d'architectures spécifiques et des régles
de traduction générales, simples et efficaces permettant de passer des algorithmes a leur implantation. Divers
outils de Conception Assistée & I'Ordinateur (CAQ) ont également été développés dans le cadre de ce projet.

SUMMARY

In recent years the great advance in VLSI technologies and the increasing number of application fields using digi-
tal signals have created a need for new methods for developing Application Specific Integrated Circuits (ASICs) in
the field of Digital Signal Processing (DSP). In this paper a novel method, in form of a vertically sliced synthesis
system, treating these tasks is presented. The emphasis of the methodology has been put on finding suitable fil-
ter algorithm classes, on developing a special purpose architecture, on establishing a simple, general and efficient
translation of the filter algorithm into terms of hardware. Furthermore, some Computer Aided Design (CAD) tools

197

have been developed during the project.

I. Iintroduction

Digital Signal Processing (DSP) presents many interesting
advantages compared to analog processing. Problems such as
tuning, ageing and temperature drift are totally avoided in the
digital domain, A wide range of structures and algorithms are
available, some with a high amount of flexibility.

DSP algorithms can be implemented using ASICs, which
offer high density integration and possibility to realize large and
complex filtering systems on a small number of chips. Fur-
thermore, existing systems can evolve without complete sys-
tem redesign, and ASIC designs can be well protected. All these
aspects added to the advantages of digital signal processing ren-
der the field very attractive.

Synthesis: Realization: Implementatio

~Approximation » Algodthm « Architecture

| *Algorithm * Analysis « Arithmetic

» Optimization » Representation

« Layout

» Signal flow graph

DSP Domain

VLSI Domai

Figure 1

The design task for digital filters

Many different design strategies and methodologies can be
found in this domain. Where these strategies differ most is
probably on the target architecture and the mapping from the
DSP algorithm. Some strategies described in LAGER [Raba85]

and CATHEDRAL II [DeMa87] are based on microprocessor
architectures. Other ones, MOVALI[Ligt86], FIRST [Deny85],
CATHEDRAL I [DeMa87], are based on the data-flow con-
cept.

A good design strategy is needed to reduce the design time,
which otherwise can be prohibitive. It is essential to havc a
deep understanding of the design process of the DSP and VLSI
fields, in order to be able to define a good methodology.

Il. Design and Implementation Task

The task can be divided into three steps namely, synthesis,
realization and implementation. First, some requirements and
specifications given from the application should be fulfilled.
The synthesis step consists of using a proper approximation
algorithm to find a pole-zero configuration for a filter meeting
these requirements. In the realization step, an explicit descrip-
tion of the filter algorithm is developed, i.e., a signal flow
graph (SFG). Furthermore, optimization of word-lengths and
certain properties are made in this step. This process is very in-
terdependent on the final implementation step of the filter,

Fig. 1 shows an overview of the design process. The real-
ization step can be considered to be a part of both the DSP do-
main and the VLSI domain. The filter synthesis step has been
developed over the last decades and can thus be considered as
well established. The same can be assumed for the VLSI im-
plementation domain. For these two steps the main point is to
select feasible parts of existing strategies. For the realization
step, however, new methodologies can be defined, since this
step serves as a bridge between the DSP and the VLSI domains.
A strict definition of the final filter algorithm description must
be made, as well as a definition of the real implementation cost
in terms of this description.

798
11l. DSP Algorithms

Constraints must be introduced to limit the complexity of
the methodology. There are some fundamental differences be-
tween adaptive and fixed filter algorithms, both when synthe-
sizing them and implementing them. The methodology de-
scribed here is basically limited to Linear and Time Invariant
(LTI) digital filters. Only weakly programmable filters, i.e. fil-
ters with a finite set of predefined coefficients, are considered.

Classical digital filters can be divided into two main groups.
First of all filters with Finite duration Impulse Response (FIR).
Secondly Infinite duration Impulse Response (IIR) filters. They
have their own specific properties [Oppe75]. For example, IIR
filters can usually be realized more efficiently than FIR filters.
On the other hand, stability is often a problem due to the recur-
sive nature of IIR algorithms and due to the finite representation
of numbers. For this reason they are very cumbersome to use in
certain applications.

Fortunately, one class of IIR filters provides a solution for
these problems, namely the so-called Wave Digital Filters
(WDFs) [Fett86]. They are well suited due to their excellent
numerical properties, to their simplicity, and also due to the
generality of the theory developed around them. They have
proven to provide a forced response stability even under looped
conditions. All these arguments makes it natural to choose the
WDF as the main filter class.

Different discrete transforms are usually main issues in the
literature and conferences on DSP, The most popular are the
Discrete Fourier Transform (DFT) and the Discrete Cosine
Transform (DCT). From an implementation point of view,
these transforms do not differ in any fundamental way from
LTI filters. Thus, the same mer.hodology can as well be applied
in this domain [Def189]

1V. Architecture

An almost infinite variety of choices exist for the VLSI
implementation of filter algorithms. First of all on the archi-
tectural level, then on the representation level, on the bit level
and finally on layout level. Choosing a fixed architecture will
never be optimal for all possible applications but it will sim-
plify both the realization and implementation step.

.

add/sub

7

X Xp%3 XN

Figure 2 Basic distributed arithmetic processor

The target architecture described here is based on a bit-serial
multi-processor structure of data flow type [Dinh84]. The basic
processor performs a calculation of an innerproduct, i.e., a vec-
tor multiplication between a fixed coefficient vector and a data
vector using the distributed arithmetic algorithm [Pele74,
Siks81, Wanh81]. Using innerproduct operations rather than
simply additions and multiplications, together with the multi-
processor structure, provides a very powerful architecture from a
computational point of view. Furthermore, this architecture can
be efficiently used for many fixed filter and discrete transform
applications. It also yields a modular and regular VLSI imple-
mentation,

The basic hardware requirements for performing this are, a
ROM, an arithmetic unit consisting of an adder/substractor and
an accumulator register, fig. 2. The basic processor is built-up
by an extended serial-parallel multiplier (shift-accumulator) and

a ROM look-up-table. A bit-sliced design style using dynamic
registers and a pass transistor full-adder have been used to realize
the processor unit. The processor has been implemented in a 2
um technology cmn20a from VLSI Tech. Inc. (VTI) and an in-
tegration density of 3300 MOS/mm2 was reached for the arith-
metic part.

Simulations and test integrations have indicated that the
processor can be clocked at 100 MHz, i.e. with a trough-put of
100 Mbit/sec. Thus, sampling rates in the range of 3 - 8§ MHz
can be obtained. Furthermore, a bit-serial system is very area
efficient. Interconnections, both on chip and external, are casily
and efficiently implemented in a bit-serial system. This archi-
tecture has shown to yield a very impressive trough-put/area
performance. Moreover, the processor unit can easily be
parameterized and generated automatically from a small set of
basic cells.

o——[T]Q———»o

RAM

In register
Outregivur}— g

T
a) c)

Figure 3 Delay element, a) RAM realization b) Symbol
¢) minimum register realization

b)

To store the internal state variables, i.e. to realize the delay
elements from the SFG, RAM or simply shift-registers are used
dependent on the application, fig 3. Using one storage unit for
each state variable minimizes the required memory band-width.
Some special logic to perform different quantization and over-
flow characteristics completes the active part of the architecture.
It has been shown to be advantageous to combine this logic
with the storage units.

V. Mapping the DSP Algorithm into the tar-
get Architecture

Once a feasible filter class and an efficient high performance
target architecture have been found, the remaining problem is
the realization step. Here an efficient mapping of the filter
algorithms into the architecture should be made. Given that the
architecture is based on distributed arithmetic, it is clear that an
innerproduct representation of the filter algorithms is desired.

) wa)=Awm+Bx@ » [W Eﬁﬁ; : 83
ym =Cwm+Dx(m W (n+1) = S| v (n)

§= [A BJ wy(nHD) wy(n)

c D Y@ X (n)

Figure 4 State-space representation.

Transforming the filter algorithm into a numerically
equivalent state-space form (NESS) [Oppe75, Wanh8l1], i.e., to
describe the algorithm in a matrix form solves this, fig. 4.
From a DSP point of view it is essential that the state-space
transformation is numerically equivalent, otherwise some of the
desired numerical properties might be lost. Using the compacted
form, described in fig. 4b, the innerproducts are easily found and
in fact all possible parallelism for the algorithm is extracted.
The state-space description also reduces the quantization noise
to a minimum. Moreover, a description of the algorithm in
matlrix form simplifies the use and the construction of CAD
tools.

All LTI digital filters can be described in state-space form as

well as the discrete transforms, which shows that this approach
is general and that it can be used uniformly for different
applications. Here again, the choice of filter algorithm is
important. Some filters give a sparse state-space matrix, e.g.,
the Wave Digital Lattice Filters [Gasz85].

Each row of the state matrix forms an innerproduct and can
be directly mapped and implemented on a single basic proces-
sor. Using the correct number of processors makes it possible
to calculate all new state variables concurrently, Dependent on
the application, various configurations of processors can be
used, e.g., in the case of a low speed application only one
multiplexed processor can be used for calculating all the
innerproducts. Also channel multiplexing can be employed.

Vi. CAD Framework

A Computer Aided Design environment has been defined to
support the described methodology [Sj6s89]. It can be viewed as
a vertically sliced synthesis system. Already existing filter syn-
thesis tools are used for the synthesis step, some adaptations
will be made to transform the output format to a hierarchical
netlist describing the signal flow graph SFG in fig. 6.

Filter Synthesis Tools
Filsyn, Falcon, ..

Realization Tools
SFGkernel, COOP,

Analysis Tools
DIGEST

Implementation Tools [
vII

Figure 5 CAD framework

A special purpose software, under the name of SFGkernel,
has been developed where the signal flow graph is entered using
a graphical entry supporting hierarchy. Thus the filter can be
given on the level of the Wave Flow Graph (WFG) rather than
as a flattened SFG, this both saves time and eliminates the
probability for errors. This software transforms the hierarchical
SFG to state-space form where each state coefficient is given as
an explicit expression of the initial filter coefficients. This al-
lows the state-space COefficient OPtimization program
(COOP) to optimize the filter coefficients such that minimum
word-lengths for the state coefficients are obtained. COOP is
based on the Simulated Annealing algorithm.

To tune different filter characteristics DIGEST [Clae84] is
employed. DIGEST is also useful for different analysis and
simulations of the DSP algorithm as well as to verify the cor-
rectness of the state-space transformation and the optimization.

A tool taking an optimized state-space description as input
and generating an Architecture Net List (ANL), is under devel-
opment, Architecture Synthesis and System Optimization
(ASSO). The ANL should describe each needed module and all
its parameters. ASSO will estimate the chip area and speed
efficiency. Using this tool it is believed that a fast and accurate
evaluation of different solutions can be made. The final inten-
tion is to incorporate this tool into the optimization step such
that an even more optimal final chip layout is gained.

The ANL is passed on to the implementation step where
different module generators, implemented using VTIvip, are
used to generate the actual layouts as well as simulation mod-
els. In fact all the implementation step is based on the VTI
system [VTI 87].

19

The CAD framework does not serve as a silicon compiler,
but is rather a special purpose tool-box for the designer. Hence,
human interaction still remains essential on each level.

Vil. Example

To clarify the methodology a simple example is given.
Consider a simple third order lowpass filter of Cauer type with
a sampling frequency F;. Different trade-offs depending on this
frequency will be summarized later on. A WDF can be derived
from a lumped element ladder reference filter. Many different
choices and variations are available for the synthesis [Fett86],
but this is not presented here. The final wave flow graph is an
exact and detailed description of the filter algorithm.

xm) M f y(}
yll l .~) l lys
I
w {n) Wy (n)
|
@D w, ()
Figure 6 Waveflow graph of a third order WDF

The wave flow graph is entered using a graphical editor as-
sociated to the SFGkernel tool. Then the WFG is flattened to a
normal SFG and a state-space transformation is performed. Itis
very important that it is made numerically equivalent, i.e.,
keeping the same state variables, otherwise the excellent
numerical properties of WDFs are lost. Using COOP an opii-
mized state space description (OSSD) can be obtained.

Scaling of the filter is made by computing different norms
using DIGEST and by multiplying rows and columns in the
state matrix by scale factors. The numerical properties of the
original WDF are conserved if the scale factors are chosen to
simple powers of two. For example, if it is found that the state
vanable i should be scaled down with a factor of 2, row iis
multiplied by 2-! and column i by 2.

AR\
QO
INPUT

Case A: Single Select inner.
Processor . product signals
Realization '

Shift- :

po ROM

Case B: Multi- | “me®
Processor -
Realization

INPUT

i

D D D' D
Shift- [£ Shift- |2 Shift- |2 Shife- | =
Acc. 8 Acc. 2 Acc. 2 Acc. 2

Figure 7 Single- respectively Multi- processor realization

Once the OSSD is found, it is transformed into hardware re-
quirements in form of an architecture netlist using the ASSO
tool. Many different solutions can be found dependent on the
application. Two different possibilities are presented in fig. 7.
Case A corresponds to a single processor realization, while case

800
B shows a realization using one processor per innerproduct.

Assume that the necessary data or signal word-length wg
was found to be 20 bits and that the ROM coefficient word-
length w¢ is equal to 10 bits everywhere. For a trough-put of
approximately 100 Mbit/sec, a theoretical maximum sampling
rate of 5 MHz could be obtained using a multi-processor
implementation like in case B.

However, due to pipelining of the processors, the maximum
sampling rate will be lower. The latency time for a processor is
we + wq clock cycles. If quantization and saturation arithmetic
is desired, a storage unit of length wgq bit is required. This re-
sults in a total cycle time of 2wy + w¢ = 50 clock cycles. Thus,
in case B the maximum sampling rate is reduced to 2 Mhz. In
case A four different innerproducts are calculated on the same
processor unit and the pipelining is no more a problem.
Consequently, case A gives a maximum sampling rate of
1.25 MHz.

Other trade-offs can be made for multi-channel applications.
The only difference is that the delay elements are implemented
by RAMs instead of shift-registers (fig. 3) when the number of
channels is sufficiently large. A diagram showing the maxi-
mum sampling frequency versus number of channels is shown
in fig. 8a. When the number of channels is less than three, case
B shows an achievable speed which is lower than the theoretical
curve due to the pipelining problem. Case A and B give the
lower and upper bounds for the obtainable performances of this
architecture using different numbers of processors.

Area is an other important measurement and therefore a dia-
gram is plotted in fig. 8b. The limit for using RAM storages
instead of registers is at 7 respectively 9 channels for case A and
B. The difference is smaller in area than in speed for the two
cases. These diagrams are specific o the given example and
must be evaluated for each application.

A Number of A Number of
channels 4 channels
10 10
. * A: Single Processor
R o B: Multi Processor |
n \ Theoretical B
5 - 5
7 b e A: S'm‘glc Processor
-1 - o B: Multi Processor
0 T T T I>ollllllllllll>
0.0 1.0 2.0 1.0 2.0 3.0
a) Max Sampling Rate [MHz] b) Area [mm?]
Figure 8 Speed and Area versus number of channels

It is clear that the architecture is especially well tailored for
high speed applications and/or multi-channel applications. No
complete system has yet been implemented using the method-
ology. However, a decimation filter for a HIFI audio application
is under initial development. Furthermore, a 16-point DCT chip
containing 95 000 transistors is soon ready for integration. This
last design has shown to have some very interesting character-
istics [Defig89].

VIill. Conclusion

It has been shown that appropriate methodologies are essen-
tial for fruitful ASIC implementation of DSP algorithms. The
methodology presented in this paper describes a vertically sliced
synthesis system specially tailored for efficient implementation
of digital filters and discrete transforms. The concept of the
mapping between the DSP domain and the VLSI domain is not
only efficient and general, it even improves the numerical

properties and facilitates the construction of software tools. The
architecture has shown to be very area and speed efficient, but it
suffers from flexibility, i.e., it is only weakly programmable. It
is believed that the field of applications where this methodology
can be used will grow enormously in the next few years.

IX. Acknowledgements

This work was supported by FSRM, Fondation Suisse pour
la Recherche en Microtechnique, under grant CS 85/7.

X. References

[Clae84] L. Claesen, H. J. De Man, and J. Vandewalle :
"DIGEST: A Digital Filter Evaluation and Simulation
Tool for MOSVLSI Filter Implementations”, IEEE J. of
Solid-State Circuits, Vol. SC-19, No. 3, June 1984.

[Defi89] 1. Defilippis, U.Sjostrom, M. Ansorge, F. Pellandini :

"A 2-Dimensional 16 Point Discrete Cosine Transform
Chip for Real Time Video Applications”, GRETSI-89
Symposium, Juan-Les-Pins, June 1989.

[DeMa87] H. De Man, J. Rabaey, P. Six, and L. Claesen :
"Computer Aided Synthesis Systems for Digital Signal
Processing”, Proc. journées d'électronique, Lausanne,
Switzerland, October 1987.

[Deny85] P. Denyer, and D. Renshaw : “VLSI Signal Processing:
A Bit-Serial Approach”, Addison & Wesley, VLSI
Systems Series, USA, 1985.

[Dinh84] F. Dinha, B. Sikstrom, U. S§jdstréom, and L.
Wanhammar : "LSI Implementation of Digital Filters -
A Multi- Processor Approach”, Proc. Int. Conf. on
Computers,Systems and Signal Processing, Bangalore,
India, Vol. 3, pp. 1316-1320, December 1984.

A. Fettweis : "Wave Digital Filters: Theory and
Practice”, Proc. IEEE, Vol. 74, No. 2, pp. 270-327,
February 1986.

L. Gazsi : "Explicit Formulas for Lattice Wave Digital
Filters", IEEE Trans. on Circuits and Syst., Vol. CAS-
32, No. 1, pp. 68-88, January 1985,

A. Ligtenberg, M Vetterli, and J.H. O'Neill
"MOVAL: A Framework for turning Digital Signal
Processing Algorithms into Custom VLSI", Signal
rocessing, Vol. 11, No. 2, pp. 119-132, 1986.

[Oppe75] A. V. Oppenheim, and R. W. Schafer : "Digital Signal
Processing”, Prentice-Hall Inc., Englewood Cliffs,
N.J., 1975.

A. Peled, and B. Liu : "A New Hardware Realization of
Digital Filters, IEEE Trans. Acoust. Speech, Signal
Processing”, Vol. ASSP-22, No. 6, pp. 456-462,
December 1974.

[Raba85] J. Rabaey, S. Pope, and R. Brodersen : "An Integrated
Automated Layout Generation System for DSP Cir-
cuits", JEEE Trans. on CAD, Vol. CAD-4, pp. 285-
296, July 1985.

B. Sikstrém, L. Wanhammar : A Shift-Accumulator
for Signal Processing Applications”, Proc. European
Conf. on Circuit Theory and Design., ECCTD'81,The
Hague, The Netherlands,1981.

[Fett86]

[Gazs85]

[Ligt86]

[Pele74]

[Siks81]

[Sjos89] U.Sjosurom, I Defilippis, M. Ansorge, F. Pellandini :
"CAD Environment for Digital Filter Design and
Implementation”, ISSSE-89, Paper No. 105, Erlangen,

September 1989,

[VTI 87] VLSI Technology Inc. : Diverse Manuals, VTI, 1987.

[Wanh81] L. Wanhammar : "An Approach to LSI Implementation
of Wave Digital Filters”, Linkping Studies in Science
and Technology, Diss. No. 62, Linkdping University,
Sweden, April 1981.

