DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989

GENERALISED TRANSFORMATIONS
IN NONLINEAR IMAGE RESTORATION

M.E. Zervakis and A.N. Venetsanopoulos

University of Toronto
Toronto, Ontario
M5S 1A4, Canada

RESUME

Dans cet article, un algorithme ge'ne'ral pour la restoration d’
images produites par des systemes non-lindaires est introduit. L’
algorithme proposé conduit a ce qui est appelé la "technique de
transformation generalisée”. Il peut etre utilis€ non seulement
pour la restoration des systemes de formation d” images multipli-
catifs, mais aussi pour la restoration 4’ une classe générale de sys-
temes de formation d’ images. Afin de démontres les proprictes et
les avantages de 1’ approche de transformation généralisé, le filtre
de restoration basé sur I’ application directe du critere MMSE en
modele de bruit multiplicatif est obtenu. Le crittre MMSE,
applique a 1" image regue ou bien transformée, résulte en une
dégradation de la structure detaillée. L’ incorporation d’ adaptivité
locale dans 1’ algorithme de restoration introduit est aussi con-
sidérée. La formulation d’ un critére combing incorporant les cri-
téres MMSE et LSE est proposée. Enfin, les techniques introduites
sout comparées a 1 approche MMSE direct.

SUMMARY

In this paper, a general algorithm is introduced for the res-
toration of images formed through nonlinear systems. The
approach introduced, derives the so called "generalised transfor-
mation technique”. The algorithm proposed can be employed for
the restoration of not only the multiplicative, but also a general
class of image formation systems. In order to reveal some of the
properties and advantages of the generalised transformation
approach, the restoration filter based on the direct application of
MMSE criterion in the multiplicative noise model, is also derived.
The MMSE criterion applied on either the received or the
transformed image, results in a degradation of the detailed struc-
ture. The incorporation of local adaptivity in the restoration algo-
rithm introduced, is also addressed. The formulation of a com-
bined criterion incorporating the MMSE and the LSE criteria is
proposed. Comparisons of the techniques introduced with the
direct MMSE approach are presented.

1. INTRODUCTION

Many nonlinear image formation models can be represented
by the general equation

gy)=q ([ hx=x1,y-y1)f (x1,y1) dx1dy; O n(xy)) (la)
where g, f, and n are the received, the original image, and the noise
process, respectively. Furthermore £(.,.) is the system’s point
spread function (psf) and ¢ (.) is the system’s point nonlinearity.
The operation denoted by O is usually either addition, or
multiplication. In the discrete case, under the stacked (vector)
notation [1], this equation can be written as:

g§=q(HfOn) . (1b)

In many image formation systems, this model can be transformed
to a model, in which there exists a linear relationship among some
nonlinear version p (g), s (Hf), and t (n), of the terms g, Hf, and n,

respectively. This relationship is represented by:

g =p@)y=sHf)+1(n)=sHf) +n . @

The additive noise model, for example, can be classified under this
class, with s(.), p(), and ¢(.) the unit transformations. As further
examples, consider the multiplicative, the exponential, and the
nonlinearly transformed multiplicative noise models:

g=HHOn , (3a)
g=HOn, (3b)
g=qlHf)On], (3c)

where © denotes here point-by-point multiplication, and ¢ (.) is an
invertible transformation. By applying the logarithmic transforma-
tion, these models reduce to one involving signal and noise
interacting in an additive fashion:

In[gl=In[Hf]+In[n], (4a)
In[gl=kIn[Hf]+In[n], (4b)
In{g'@l=In[Hf1+In[n], (4c)

Early attempts to the solution of the multiplicative problem
were based on inverse filtering followed by a linear operator, such
as a Wiener filter. Considering the application of a fixed-
cocefficient linear filter the "homomorphic" technique was proposed
[2]. According to this approach, the image model (32) is
transformed to (4a). Then, a linear filter is employed for the remo-
val of the noise. The estimate of In(Hf) is transformed through the
inverse nonlinearity In~1(.), to yield an estimate of Hf, Finally, the
estimate of the original image is obtained through inverse filtering.
Several drawbacks of these methods render them of limited use in
image restoration. The linear filter affects not only the spectrum of
the noise, but also that of the original image. Furthermore, in the
presence of some portion of the noise power, the inverse solution
produces unacceptable results.

Various improved restoration techniques, based on local
statistics have been proposed in the literature. Lee [3] employed
the local statistics estimated in a small window centered at each
image point, in order to incorporate adaptivity to a local linear
least squares error (LLSE) estimation scheme. The multiplicative
case is approximated with an additive model through first order
Taylor series expansion. Kuan et.al. [4] considered the additive,
signal-dependent noise model, where the noise may not be the ori-

_ginal noise process corrupting the image, but an appropriate (sig-

nal dependent) modification of this process. [4] derives the nons-
tationary mean, nonstationary variance model, by making the
assumption of uncorrelated image (diagonal autocovariance
matrix). Bernstein [5] extended the results of [4] to more involved
kinds of noise, proposing an adjustable window, which depends on
the spatial signal activity.

The previous algorithms are called "local” algorithms. They
can only utilise information confined in a small area around the
pixel to be enchanced. Global approaches that act on the whole
image at once, through a filter that takes under consideration local
characteristics (edges), combine the advantages of both local and
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global techniques. Towards this direction, [6] proposed an adap-
tive scheme for the enchancement of noisy radar images corrupted
by multiplicative noise. [7] proposed a two-dimensional (2-D)
homogeneous and isotropic random field for the description of a
class of images possessing pronounced edge structures,

In this paper, a global algorithm for the restoration of images
formed through nonlinear systems is introduced. Specifically,
image formation models that can be brought to the form (2)
through a transformation, are considered. The approach intro-
duced in section 2, results in the so called "generalised transforma-
tion technique", which derives its name from the mapping from g
to p(g). If the nonlinear function s (.) is logarithmic, then the non-
lingar mean square error restoration filter can be analytically
derived [8]. The statistics of the noise process ¢ (#(.)) can be accu-
rately computed (with respect to these of n(.)) in the case of a
white noise process. Otherwise, the same statistics can be
estimated from the transformed data p(g). The algorithm pro-
posed can be employed for the restoration of not only the multipli-
cative, but also a general class of image formation systems. In
order to reveal some of the properties and the advantages of the
generalised transformation approach, the restoration filter based on
the direct application of MMSE criterion in the multiplicative
model, is derived in section 3. It is indicated that this approach
can be applied only in the pure multiplicative noise case. The glo-
bal techniques that are based on the application of the MMSE cri-
terion on either the received (g), or the transformed image (p (g))
result in degradation of the detailed structure. The incorporation
of local adaptivity in the global restoration algorithm introduced in
section 2 is discussed in section 4. The formulation of a combined
criterion incorporating the MMSE and the LSE criteria in portions
controlled by an indicator of the spatial signal activity, is

proposed. The restoration algorithm based on this approach offers
the flexibility of applying either MMSE filtering, or inverse filter-
ing, or no filtering at all, depending on the presence of detailed
structure in the area under consideration. Comparisons of the tech-
niques introduced with the direct MMSE approach are presented in
section 5.

2. GENERALISED TRANSFORMATIONS

Let the image formation model be described by (2). The
additive-noise nonlinear image restoration problem is posed as the
estimation of the original signal f that results in the transformed
image g,. The noise process »; is considered as signal indepen-
dent, whose statistics can be analytically derived. Considering the
multiplicative model (3a), for example, a particularly interesting
probability density function (pdf) that represents the noise process
n, is the log-normal:

N2
it | - CEL

This noise model results in a transformed noise process n, =t (n),
whose pdf is the Gaussian. Some interesting properties of the log-
normal process can be found in [9].

1 (z(n)-m)?
p cxp{— T} . (Sb)

The estimator that has been proposed for the nonlinear res-
toration problem has the form [8]:

F=Wr(g), ©

where W and r(.) are a linear and a nonlinear transformation,
respectively. The MMSE criterion results in the estimator:

WE{r(gp)r(g};)}=E{fr(g})} M

This is the general form of the MMSE estimator that is composed
from a nonlinear followed by a linear transformation. Under the
assumptions that the nonlinear transformation r () is the inverse of
the model’s nonlinearity s (), and that

Flt(m)]=e' ™ F,[e'®]=

W(o,o,) =

s)y=aln(x) , (é)
the nonlinear function can be approximated by:
1
r(g,,):r(s(Hf)+n,)=Hf+~O?(Hf)®nt, )

where © denotes point-to-point multiplication. Notice that for the
e . =l 1
pure multiplicative model, r ()=s " ()=p ™" (.), so that

g=r(sHf)+n)=Hf +H)On, .

The noise corrupting an image formation system is usually station-
ary. Hence, the noise process #, is assumed to yield a homogene-
ous autocorrelation matrix, even though its mean is not restricted
to be zero. Assuming that the mean of the noise process is n,, after
some algebra one gets:

2n
E{r@g)r@gpl= (1+—&t—) HRgH' + —&17 HRH' © R, (10a)

where Ry and R, are the auto-correlation matrices of the original
image fand the noise n,, respectively. Furthermore,

E(fr(g)) = () RpH" . (10b)

Introducing (10) into the MMSE equation (7):
W=xRH' [« HRH'+% HRH'OR, 17!, (1n

where ¥, K, and x; denote the corresponding coefficients in (10a)
and (10b). In the case of zero mean noise #,, the scalars K and x;
are equal to unity, so that:

1 .
W=ReH' [HRGH' + — HR/H'© R, 1™ (12)

Assuming that the Psf is space invariant and that. stationarity
assumption holds, all matrices involved in (11) or (12) are Toeplitz
and, consequently, they can be approximated by circulant
matrices. Hence, Fourier transform (FT) techniques are applicable
in the implementation of the linear transformation W. For the mul-
tiplicative model, the coefficients of W in the FT domain are given
by:

P60, )H (@7,60;)
[H(w1,0,)12 P 01,0 ) + éP,/( @1, )

where P @1, ) is the power spectrum of f, H( ®;,m; ) is the
FT of the Psf. Furthermore, P,{ @1,@; ) denotes the N 2 cigen-
values of the corresponding matrix (HRfH’ ® R,;)in (12).

Summarising, the proposed "generalised transformation tech-
nique" is characterised by the following steps.

Generalised Transformation Technique

i Estimate the auto-correlation matrix R, of the transformed
noise process. Compute also, the DFT H (t;, ).

ii.  Evaluate the power spectrum P{®;,®;) of f, through (10a).

iii. Evaluate the nonlinear MMSE filter by implementing (11).

iv.  Apply the filter on the data 7 (g,).

For the multiplicative noise case notice that all, except the
second step, are performed in the observed (g) data domain; no
transformation is required.

3. MMSE RESTORATION

Let us consider the multiplicative noise model (3a) and the
application of the MMSE criterion. Introducing the diagonal
matrix A, with elements the elements of the noise process, the
problem can be modified to:

8=MHS




The (linear) MMSE criterion requires the solution of :

min ||f =f|*=[lf -Wg I* .
This function is minimised at:

— -1
W=Rg Ry .

The correlation matrix between f and g is given by:
Ry =E{ffH'A }=R;H' A, , (13a)

where, the noise is considered independent of the image. Further-
more,

Rg=(HRfH')®R,, . (13b)

Consequently,
W=R;H' A [(HR/H')OR, 17 .
Since the noise process n is of non-zero mean n,
W=RH' A [(HRAHD® (i +C)17
In the case of uncorrelated noise process with mean equal to 7,

W=nRsH' [EZHRfH'+(HRfH‘ YOC, 17 . (14)

The MMSE criterion, in the case of multiplicative noise, pro-
duces an analytic solution. However, as the image formation
model becomes more complicated, the MMSE approach requires
more information and complicated manipulations. The estimation
of the original image in model (3b), for example requires
knowledge of higher order statistics, whereas that in (3c) requires
the utilisation of a nonlinear estimator. The generalised transfor-
mation technique bypasses these problems by considering the esti-
mation problem in the transformed data domain.

4. ADAPTIVE NONLINEAR RESTORATION

The MMSE criterion (in either the data or the transformed
data domain) minimises in the mean square error sense the dis-
tance between the original and the restored image. However, the
human eye can tolerate high noise levels at areas of high spatial
detail (edges). In such areas, it prefers the preservation of the spa-
tial structure to noise suppression. Hence, the notion of the trade-
off between restoration and feature preservation becomes evident,
Kuan [4] argues that the Wiener filter produces good results if it is
applied in a local fashion, so that it locates and preserves edges. A
local restoration scheme, however, is not utilising the full amount
of correlational information contained in the data. Alternatively,
we argue that the global MMSE approach produces good estimates
as long as local edge information is utilised. Under this formula-
tion the MMSE filter utilises global information, even though it
does alter its form at each image pixel, in order to avoid the full
application of the Wiener filter at areas close to edges. Consider
the transformed version (9) of the data. The operator r (.) restricts
the nonlinear noise effects in the signal-dependent noise term.
Since the human eye is not distracted by noise at the regions of
edges, the noisy version r (g,) of Hf can be employed as to provide

information concerning the edges. Furthermore, the inverse filter
does not destroy the characteristics of the original image; it does,
however, amplify the noise, producing (in high noise contamina-
tion) noisy estimates. Thus, in the case of light noise corruption,
the restoration algorithm may also favour the local structure in the
inverse filter. Within these guidelines, the minimisation of the fol-
lowing trade-off criterion is proposed:

E{(l—a)llf—}lF +o(1-B)||C1L 7 (g, -HF 1| + o] Cal r(g,)~F 1P

The characteristics to be preserved are introduced through the
inverse solution, and/or the transformed image and they affect the
result through the scalar o. The variable B may be either binary
{0,1}, or continuous in [0,1], and incorporates a preference
between the inverse and the transformed image.

The coefficient o controls the restoration quality that is
compromised at each pixel, to retain some desirable structure.
Therefore, o is a function of the position and introduces the spatial

feature to be preserved from the inverse solution H™r (gp), or the
transformed data r(gp). Image features to be preserved are, usu-
ally, the areas of gray-level transitions (edges). Hence, the scalar
0<o<1 has, usually, the form of an edge detector; o=1 at sharp
edges, and a=0 at flat image areas. Furthermore, since the original
image is correlated with g and r(gp), it ig expected that similar
correlation applies between the estimate f, and the transformed
data r (gp). The restored image fis expected to be close to the ori-
ginal one, f. Therefore, the pixels of the residual (f—f) are
expected to be little correlated. However, since the Psf matrix H
increases the inter-pixel correlation, it is also expected that a non-
negligible correlation scheme applies between Hf and r(gp).
These facts are expressed with the presence of matrices C'; and
C,, which are used as whitening operators. Since (f —f) is con-
sidered uncorrelated, such a whitening operator does not appear in
the first norm of the criterion. Under this interpretation, the
matrices Cy and C, introduce spectral information in the adaptive
algorithm.

In the presence of strong noise, the inverse solution is of
unacceptable quality so that only information derived from r(g,)
itself is employed (B=1). Hence the following combined criterion
is considered for the demonstration of the adaptive algorithm:

min E{(l—a)llf—}|F+OLHC[r(gp)~}]|[2}- s)

Considering an estimator of the form (6), and optimising the cri-
terion over W:

W=(-0) [ (1~) ] +aC!C 1! RpH' [ HR(H' + HRH'O R, 17!
+a[(l-I+aCCT CiC . (16)

The form (16) introduces a general class of nonlinear restora-
tion filters. Depending on the choice of a and C, the role of the
first or the second quadratic form in the objective function, is
enhanced. Hence, several interesting filtering structures are
obtained for different combinations of the controlling variables.
Under the present restoration structure (16), one particular filter
has to be designed at each position i,j. The process, however, is
highly simplified if no spectral knowledge is considered. For the
sake of simplicity, the case C‘C=I is further considered. In this
case, only one filter has to be designed. Its application on various
image pixels is controlled by the spatially varying «. Hence, for
the i-th pixel (in vector notation),

Fi={Wirig) =
(1~0){ Rp H' [HReH' + HRAH'O R, T Ji+ ouf{ r(gp) i

The implementation of the algorithm is performed in two steps.
First, the MMSE filter is designed for the whole image. This filter
can be implemented through FT techniques. Then, it is applied on
image pixels, in portions controlled by the local value of o;. Two
simple forms of edge indicators, one based on the local and the
other on the robust statistics, can be found in [9]

an

5. EXAMPLES

In this section, two specific examples of the application of the
generalised transformation technique are presented. The first one
is an 1-D example that demonstrates the advantages of the adap-
tive technique proposed over the MMSE approach on the multipli-
cative model. The original signal assumes values in the range of 3
to 200, and its extent is 256 points. The signal is convolved with a
triangular psf whose extent is nine (9) points. A white log-normal
noise process affects the resulting signal in a multiplicative
fashion. The signal to (multiplicative) noise ratio (SNR) is 38dB.
The distorted is presented in Figure 1a (solid line), along with the
original signal (dashed line). The signal restored through the
MMSE criterion applied on the multiplicative model is presented
in Figure 1b. The smoothing effect on the detailed structure
(edges) is evident. The adaptive algorithm results in the signal
presented in Figure 1c. Close to the edges, this algorithm favours
the structure of the inverse solution. Hence, the edges are reliably
reconstructed, to the expense of some noise preservation at areas
of high signal activity.
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The second example concerns the application of the adaptive
algorithm on a 2-D image. The 256 x 256 test image in Figure
2a.is convolved with a 2-D psf that simulates defocussed lens with
circular aperture, whose diametric extent is five (5) points. A mul-
tiplicative log-normal noise process corrupts this model, yielding a
SNR equal to 34 dB. The distorted image is presented in Figure
2b. Figure 2¢ depicts the result of the linear MMSE restoration
filter, whose mean square error from the original image is 17.46.
The adaptive algorithm proposed results in Figure 2d. This algo-
rithm favours the structure of the received image (Figure 2b) at
areas close to edges. The resulting mean square error is 18.91.
Even though the adaptive algorithm yields a little higher mean
square error than the linear MMSE approach, it preserves the
edges better, as can be seen by comparing Figure 2d to 2¢c. The
difference is more pronounced at the edges of the tubes, where the
signal activity is high.

6. CONCLUSION

In conclusion, a general algorithm is introduced for the res-
toration of images formed through nonlinear systems. The
approach introduced is called "generalised transformation tech-
nique". It can be employed for the restoration of a general class of
image formation systems, including the multiplicative noise
model. In order to preserve the detailed structure, the incorpora-
tion of local adaptivity in the restoration algorithm is also
addressed. The formulation of a combined criterion incorporating
the MMSE and the LSE criteria is proposed. Comparisons of the
techniques introduced with the direct MMSE approach are
presented.
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Figure 1
Restoration of 1-D multiplicative noise model.

a) Received signal; b) Signal restored through direct application of the MMSE criterion on the
multiplicative model, and c) restored through the adaptive "generalised transformation tech-

A,

nique”.

]

Figure 2
Scene from a factory;
a) Original and b) Received image; ¢) Image restored through direct application of the MMSE -
criterion on the multiplicative model, and d) restored through the adaptive "generalised transfor-
mation technique”.



