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Abstract :

In optical microscopy, the a priori knowledge of the nature of the object to be imaged and of the transfer
function of the optical system allows to improve the limit of resolution beyond classical bounds derived from the
consideration of the optical transfer only. This communication presents a quantitative study of this improvement as a
function of the object model and of the image noise. The method is derived from recent studies about the limit of resolution
in image restoration. An application to linewidth measurement on integrated circuits is shown.

Résumé:

En microscopie optique, la connaissance a priori de la nature de l'objet imagé et de la fonction de transfert du
systéme optique permet d'accroitre considérablement la limite de résolution. On présente une étude quantitative de cette
limite, en fonction du modeéle adopté pour l'objet et du bruit dans Iimage. La méthode d'analyse dérive des études récentes
portant sur la limite en résolution de la restauration d'image. Une application & la mesure de la largeur de traits sur
circuits intégrés est présentée.

Intr tion :
The accuracy in metrological optical microscopy can be improved by modeling the object and the optical transfer.
Widths of binary objects, like thin lines of integrated circuits have been measured {1} with an experimental accuracy of
0.02um, using a model m(pq,...,py), where pq,....py are a small number {n=3 for binary objects) of unknown

parameters.

Using such an a priori information can be compared with "super-resolution” techniques where general a priori
information, like localisation or positivity, is used. In these techniques, the resolution must be limited by means of
regularisation operators {2}, in order to avoid instabilities in the reconstructed object. We will show that, with modeling
techniques, the number of parameters must also be limited. The first part of this communication is devoted to the
quantitative assessment of the accuracy obtained using a given model.

1) Theoretical of the un inties of the model parameter.
1.1) Expression of the uncertainties

A 1-D experimental image, f(x),x=1,....,X is digitized in X pixels, in the image plane of an optical imaging system.
A model m(x,pq,.....pp) of this image is supposed to be available with a number, n, of parameters much lesser than the
number, X, of pixels. This model accounts for the convolution of an object O(x,pq......pn) and of the spread function of the
optical system. Typically parameter pq will represent the line width, L. We assume that the model is an exact
representation of the noise-free object : .

f(x) = m(x,pg1:-..-.PoR) + B(X) [1]

where pgq.,.....pgn are the (unknown) exact values of the parameters that define the object. b(x) denotes the noise

in the digitized image; it is assumed to be an additive, white, zero-mean gaussian process with variance c2.
A "best" set of parameters pq,.....,p, , that minimizes a mean square criterion &(x) ,is obtained, using a non linear

iterative method, ( Gauss-Newton like) :
X

X
PqsmrnPp SUCh that % [H(X)-M(X,Pq,eeeeP)] 2 = X £(x)2 minimum 2]
x=1 x=1

Our purpose is to determine the relative uncertainties dp; between the true and the computed parameters :
dPi= (Pi-POi)/pj .i=1,....n

To express them, it can be assumed that they are small enough (much lesser than 1) in order to expand the model
m(X,pq,-.-..Pp) into a first order Taylor serie in the neighborhood of (pq,.....Pp) :

fx)=m(x,pq,...,pp)+e(X) = > (0m(x,pq,..-,Pp)/3P})-(Pi-Poj) +&(X) ' [3]
i

Equations [1] and [3] yield :

b(x)-e(x) = X (@m(X,Py,-.-.Pn)/3P))-(PiPo;) [4]

i
At this stage, the image model is linearized as a function of the uncertainties dp;. Equation [4] can be expressed in a
matrix form :
Bp= B-B| = AdP 5]

with : B, =b(x), B ,=¢(x), Ay = pi(am(x)/ap;), dP;= (pj-Pgi)/P;
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A is a matrix that represents a linear operator that maps the parameter space into the image (geometric) space.
Both spaces are Hilbert spaces , of dimensions n and X, with the 5 norm.

Bp is the orthogonal projection , along B, onto the range of A, viz the subspace of the image space spanned by
columns vectors of A. This subspace is at most a n-dimensional space, as far as the columns of A are independent. For
more details on the notion of projection, see ref:{2}.

In order to estimate dP, a back transformation is required to go from the image subspace tc the parameter space. This
is achieved by multiplying both sides of eq. [5] by the adjcint operator AT, that maps the image space into the parameter
space . The resulting "normal” equation is : ‘

ATBp= ATA dP [6]

Let (4 s bin) be the eigenvalues of ATA | ranked by decreasing magnitude order, and (V{,....,Vp) the
corresponding eigenvectors.

Let de be the projection of dP upon Vj and let BJ- = Ade . Then eq. [6] yields :

ATBj= ATA dP; = ujdP; (7]
Since B is a gaussian random variable, dP;jis also a gaussian random variable, whose estimated norm is an
estimation of the standard deviation.

Let |[V]| be the estimation of the norm of vector V . BJ- being the projection of the noise B onto one-among-X degrees

of freedom of the image, it follows that :

1811 = 17X . 1B | L]
The roots \luj of the eigenvalues of ATA are the singular values of both A and AT. Hence {2} :
IATB;I| =V 11Bjl [e]

Equations [7],[8],[9] yield the norm of the projected uncertainties de :

I8Pl = 11BI] / (Vi . ¥X )

The physical uncertainties dP; are obtained from the projected uncertainties dPJ- by implementing a change of basis

[10]

reciprocal to that which allows to express eigenvectors Vj in the basis P; of the physical parameters :

Pi=Z ajj Vj= [[dPj|| = IBl / VX (2 a2/ ) 1/2 [11 -
This final result is a quantitative assessment of the relative uncerainty, dPj, on each parameter P; of the image

model. This expression holds if the relative uncertainties remain much lesser than one.

1.2) Physical interpretation
According to eq.[11], a small amount of noise may induce high relative uncertainties, dPy,if

- operator A presents at least one small singular value pp, ;
- The projection, ajn, of parameter P; onto the eigenvector V, is  strong.
Such a case may arise in two different ways

1) A physical parameter P; is nearly colinear to Vp, ; the small value of p, means that parameter P; has little
influence on the image. Such a situation results in a high uncertainty on P;, while the other parameters still present
small uncertainties.

2) Two parameters, at least, simultaneously exhibit strong projections on eigenvectors associated with both a

small and high singular value.

Figures depict such a situation, where parameters P4 and Po have significant components, (011,29} and
(a12,02p), on the eigenvectors V4 and V. Figure 1 represents a plane spanned by eigenvectors V4 and Vp (i.e. a
parameter subspace). The mapping of this subspace by the operator A is also a plane, in the image (geometric) space,
spanned by the eigenvectors of AAT. This plane is represented in fig.2 .

Let APgq and APgp actual variations occuring on the "true" values, pgq and pga, of py and p, (eq.1). The
mappings of these parameters variations are nearly colinear, close to V'y. Thus operator A has degenerated the parameter
space into a nearly 1-D subspace of the geometric space (fig.2). The result of the measurement turns out to be very
sensitive to the image noise associated with the small singular value, p,. Figure 3 illustrates the influence of a such
noise on the measured values AP{ and APa.



Angles between projections in the geometric space are an appropriate means of assessing the degeneracy. An angle
between the mappings of two parameters, which strongly differs from 90°, will point out a model instability. In a such
case, it will be necessary to discard one parameter. Such a removal is equivalent to the a priori loss of resolution induced
by regularisation operators in image prodessing.

2) Application to line width measurement on integrated circuits :
2.1) Experimental -

A microscope with a high numerical aperture( (N.A=0.95) images a line illuminated with partially coherent
light. The image is sensed by a C.C.D. camera and digitized. The equivalent sampling step in the object plane is 0.1 um.
Signals are acquired in a 128 pixels window. In the foliowing , images of isolated lines are processed.

2.2) Modeling:

The bilinear transfer function (BTF) in partially coherent light is defined for a pair of spatial frequencies .
Nevertheless, in the case of binary thin objects, it has been shown {3} that the spectrum, I{u), of the image intensity
takes a simple form :

{u) = L (C+D) sinc(rul) TA4(u) - C cos (nul) TAs(u)

L : linewidth, C=1+Tg-2 Tg cos(¢g) = To-1 +D, Tg : relative reflectance of the object with the respect of the
substrate, ¢q: relative phase shift, TA{ and TA, are two "apparent" transfer functions computed from the microscope
BTF

The model M(u) is the product of I(u) by the transfer function of the C.C.D. camera. This mode! is non linear with
respect to the physical parameters L,Tg, and ¢, even it accounts for a linear transfer of spatial frequencies. The
inversion of the model is performed using Gauss-Newton method.

Experimental essment of the measurement precision
Estimatin im noi
When the model is exact, the differences between experimental data and model are due to the orthogonal noise, B 1
which has X-n degrees of freedom. Because the number, n, of parameters is much smaller than the number , X, of pixels,
one has ||B | =Bl .
b) Results

Table 1 presents the measurements performed on thin integrated circuits with nominal widths of 5 um and 0.8 pm.
The first column shows the measurements of the linewidth L, using MALT {1}. This method, that makes use of the
abscisses of zeroes in the image spectrum, has been experimentally validated, yielding measurement errors less than
0.02um. It can play the role of a reference as to the determination of L. The next column in Table 1 gives the
measurements of the parameters L,Tg,0g obtained by a Gauss-Newton method, and their theoretical precision derived
from the analysis of section 1 .

The main results are )

- a theoretical precision in a good agreement with the experimental one;
- a discrepancy between the linewidth given by MALT and that obtained by minimizing the difference between
data and model.

A new model has therefore been proposed to reduce this discrepancy. This model is compatible with MALT since it
yields the same location for the zeroes of the image spectrum. In fact, the actual transfer function can be worse than its
theoretical values ( because of possible aberrations) ; the new model includes a correcting factor made up of two gaussian
functions :

M5(u) = M(u). [1+g5 exp(-g4.u2)], where g5 and g4 are two additional model parameters. _

Table 2 shows the results obtained using this new model, M5. The width measurements seem to be better than those
reported in Table 1; but parameters Tg and ¢g are wrong in the case of the first object (5um wide). This result is
confirmed by our study of the parameter uncertainties, which are theorstically greater than 20% {while that of the
linewidth is about 0.5%).

A simplified model has then be introduced, which uses a transfer correction factor with a single parameter, gy:
M4(u)= M(u) exp(-g4.u2)

Table 3 summarizes the results obtained with this four parameter model, M4. Altough the global difference between
experimental data and model remains of the same order as that in Tables 1 and 2, the theoretical precision on the three
physical parameters is improved, especially for To-



According to our study of the theoretical precision, it is possible to select model M4 as the one that yields the best
results. But it should be kept in mind that the actual precision does not admit an analytic expression in the case where the
differences between data and model not only preceed from the image noise, but also originate in a wrong model.
Nevertheless the present study should prevent from introducing many new parameters in a given model, in order {0 try to
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alleviate discrepancies between data and model. -
Interestingly enough, the results summarized in Tables 1-3 show that the theoretical uncertainty on the width L is

small : this parameter proves to be particulary stable. This fact accounts for the good experimental results obtained when

measuring this parameter {1}.
To the contrary, the theoretical uncertainty of the phase shift ¢ remains rather high. This parameter does not prove

to be a very stable one. In fact its significal signification is not well established insofar as a partially coherent
illumination is a combination of different plane waves, each of them being characterized by a different phase shift that

depends on its angle of incidence.
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Tablet . experimental measurement and theoretical_precision. 3-parameter model Y Apﬂl
MALT width(M3) TO(MS3) ®(M3) stand.deviation
width value precision value precision value precision exp-model
pm pm % % % radians % arbit. units
472 483 04 37 2.0 1.62 6.9 0.23 Vi
0.67 069 1.2 83 2.0 217 27 0.10
Table2 : experimental measurement and theoretical precision, 5-parameter model
width(M5) TO(MS) 6 o(M5) g4 05 stand.deviation
value precision value precision value precision prec. prec. exp-model APUZ
um % % %  radians @ % % % arbit. units ]
475 04 89 20 0.66 1 656 198 0.14 Fig.1: actual variations APg1 and APgo
067 13 92 3.4 199 5.5 65 42 0.10 of parameters Pgq and Pgp with
' significant components on V4 and
Table3 : rimental measurement and theoretical precision, 4-parameter model Vp ggsociated with a high and a
width(M5) TO(MS5) do(M4) g4 stand.deviation small singular value, respectively.

ap,

value precision value precision vaiue precision prec. exp-model

um % % % radians % %  arbit. units
474 0.3 37 1.2 2.68 11 16 0. 14 eerrdP
067 09 87 1.6 25 4.0 20 0.07 .
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Fig.3_: influence of a white image noise

Eig.2 : mapping of the parameter plane of fig.1 into the (geometric) image space by A. on the back measurement of AP



