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RESUME

Les courbes et les surfaces a trois dimension peuvent etre characterisé par leur courbatures
principale. Un nombre de chercheurs ont utilisé cette parametrisation numerique de I'image pour
I'identification des formes. Pour une fonction de surface continue, les courbatures principale
peuvent étre derivé par des calculs locaux; Il est aussi possible de reconstruire exactement la
surface si on avait les courbatures principale en chaque point de la surface. Pour une image
numerique avec enchantillonment spatiale limité et quantitisation en profondeur, une courbe ou une
surface a trois dimension ne peuvent pas etre representer exactement. Dans ce manuscrit un
theoreme d'echantillonment pour les surface a pente limité a ét€ developé. Ce theorem et une
extension des theoremes de geometrie differentielle pour le cas discret.

Deux nouvelles parametrisations des courbes et des surfaces ont été introduit: la densité de la
forme identifie les points d'interet et la distribution de la forme characterise la courbe ou la surface
totale. La densite de la forme peut etre utiliser comme un detecteur de gradients tri-dimensionels
pour selectioner la forme essentielle.

SUMMARY

Three dimensional curves and surfaces may be characterized by their principle
curvatures. A number of researchers have used this parameterization of image data for
shape identification. For a continuous surface function, the principal curvatures may
be.derived from local computations; furthermore, it is possible to exactly reconstruct a
surface given the principal curvatures at all points on the surface. For a digital depth
image with limited spatial sampling and depth quantization, a three dimensional curve
or surface cannot be exactly represented. In this paper, a sampling theorem for slope-
limited surfaces is developed that extends differential geometry theorems to the
discrete case.

Two new parameterizations of curves and surfaces are introduced: the shape den-
sity identifies points of high shape interest and the shape distribution characterizes a
total curve or surface. The shape density may be used like a three dimensional gra-
dient (edge) detector to select salient shape identification information from a range im-
age.
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1. Introduction

There has been conmsiderable recent interest in the use of
differential geometry for object identification(1-9]. This is due to the
need for more sophisticated and precise techniques to describe shapes
for three dimensional object identification. Differential geometry
offers an effective tool for describing the shape of an object.

In this paper, a sampling theorem for a slope-limited surface is
derived which extends differential geometry concepts to the discrete
case. The calculation of curvature on a continuous surface is re-
viewed in section 2, and an outline of some basic concepis of a
discrete surface is presented in section 3. The constraints; that the
sampling must satisfy to represent the shape with respect to the quant-
ization error, are discussed in section 4. The sampling theorem for
shape representation is presented, establishing the criteria for using
differential geometry for the discrete case. In section 5, the concepts
of the shape density and the shape distribution function are derived,
based on differential geometry and information theory. These are
used to determine the distribution of the shape information on an ob-
ject. Finally in section 6, a strategy for 3-D object identification
which involves the shape distribution functions is described.

2. Curvature on a Continuous Surface
A surface in E® can be written in a parametric form:
z =Z(x,y).
where Z(x, y) is a differentiable function defined in a region D of the
x,y plane.

The curvature of a curve at a point P is the limit of the ratio
A¢/As as another point Q on the curve approaches P, where A¢ is the
angle between the tangents drawn to the curve at P and Q, and As the
arc length of the segment PQ of the curve [10].

The normal curvature of a surface in a given direction, is equal
to the curvature of the curve, which is obtained by intersecting the
surface with a plane perpendicular to the tangent plane and having the
given direction. The direction on a surface is called the principal
direction if the normal curvature of the surface in a direction attains
an extremal value. The maximum value &k, and minimum value k, are
called maximum curvature and minimum curvature respectively. The
normal curvature in an arbitrary direction 8 can be specified by:

ko = k1c08%0 + kosin®6.
where 0 is the angle with respect to the direction of maximum curva-
ture.
Half the sum of the principal curvatures of a surface

H= % (kty)

is called the mean curvature of the surface.
The product of the principal curvatures of a surface is called the

Gaussian curvature of the surface,
K =k kj.
It can be shown that, if the surface is defined by the equation
z=Z(x, y),
1 W22, 20,2, 2, + (HZ1)Z,
2 (1 + sz'f' 2)3/2
o Taly =Ly

A +2z2+ 2
where Z, .7, 7Z,,.Z,, Z,, is the notation for the partial derivatives of the
function Z(x,y).

Given the values of X and H, The principle curvatures can be
obtained from

H =

k1_2=Hi VH* - K.

3. Discrete Surfaces

Suppose that a 3-D object is represented by digitized range data,
and the data are distributed on a lattice which is periodically arranged
in E2, The intervals of the Cartesian coordinates are Ax, Ay, and Az.
Let dy be the discrimination distance , defined as:

d¢ = (1-8(x-xo)Ax*+(1-8(y~y ) Ay*+(1-8(z —z))Az”.
where (xo,y0.20) is a given point and 80 is the delta function.

Definition. The points (x;,y;.z) and (xo.yo,z0) in E* are neighbors pro-
vided that

(i—x o+ 0i~y oV Hzi~z0) = d§.
The set
[(x.y.2) (ixo)® + Gi=y0)* + (zi—20)* = d§ ]
is called the neighborhood of (xo.yo.20)-

For the 2-D case, we similarly define do, the discrimination dis-
tance, by:

d¢ = (1-8(x-xo)Ax™+(1-8( -y NAy™.
Definition. The points (x;,y;) and (xo.yo) are neighbors provided that
Go-x0+i—yo) = di.
The set
[y Y(xi=x0) + Gi—yo) = d§]
is called the neighborhood of (x¢.y¢).
A discrete function, Z(x;.y;), with discrete variables is linked at

the point (xo,y0), such that if (x;,y;) is any one of the neighbors of the
point (xo,yo), then

1Z(x;.y:)-Z xo.y o) 1SN
where N is a given positive number. This link is denoted L[N .
The ratio of difference of the function f (x) is defined by:

S eotAx)~f (x0)

fa=AfIbx = A%

Definition. The ratio of the partial difference of Z with respect to x at
(xoyo), denoted by AZ/Ax |, o is the ratio of the difference at xo of
the function of one variable Z(x,yo). Similarly, the ratio of the partial
difference of Z with respect 10 y at (xo,yo), denoted by AZ/Ay |, . is
the ratio of the difference at y, of the function of one variable Z(xo,y).
When Z has a ratio of partial differences at all points of 4 neighbor-
hood of (x¢,y0), We can consider the second ratio of partial difference
at (xo,yo) and so forth. Z is smooth at (xo.yo) if it has link ratio of
partial differences of the second order at (xo,y0) . Z is & smooth sur-
face if it is smooth at all surface points.

An object O is considered as the set of points, which we call the
inhabitants of the object. The discrete surface S is a subset of O in
E?, such that for each point of §, there at least exists a neighbor
which does not belong to the set of 0. The subset of the object
which does not belong to the surface § is defined as the body. The
shape of the object can be considered as the state of its surface in E3,

Image range data records the distance of points from the viewer
to the surface of the object, and gives a surface description which is
useful for 3-D object identification. From range image data we have
no information about the contents of the body of the object. The in-
formation of the visible shape is distributed on the surface of the ob-
ject.

4. Sampling a Slope-Limited Surface

A sampling lattice is a periodic arrangement of points in the xy-
plane, where the points are defined by the position vectors. Usually,
there are an infinite number of curves or surfaces that can be generat-
ed by a given set of samples, However, if the slope of the surface is
limited and if the samples are taken sufficiently close together in rela-
tion to the maximum slope of the surface, then the samples uniquely
specify the surface and we can reconstruct it precisely. Furthermore,
the theory of differential geometry can be extended from the continu-
ous case to the discrete case, called discrete differential geometry
(DDG) or difference geometry. The following theorem, which estab-
lishes the conditions for a slope-limited surface to be represented by
its samples, is the base on which the differential geometry is extended
to the discrete case.

For convenience of presentation, we will denote Z(x,y) by Z(P),
where P is a position vector with coordinates (x.y) . Suppose that the
surface Z(P) is differentiable, and the derivative Z’(P) at 7y exists for
every direction Ar:

Z(rg+Ar) - Z(rg)

Z¢d= tim L
(9= fim &



Definition. The slope of a surface with respect to the point o is the
maximum absolute value of the derivative Z’(rg), denoted by o,

o = max(abs (Z'(ro))).

Theorem. Assume that the surface Z(P) is a slope-limited surface, in
which the slope:
O S Olpye

for all except bounded regions. The allowable error is e. Provided
that

[4

ax < Ve

e
—f . Ay<
220, 4

where Ax Ay are the sampling intervals, then Z(P) is uniquely deter-

mined by its samples Z(mAx, nAy) within the allowable error, where
mna=01,4£2 ..,

Proof. Suppose that r, is a point with coordinates (x¢.yo).
x=nlx, yo=mAy . While P is a point with the coordinate (x,y). Pro-
vided that:

nAx <x < (n+)Ax, mAy £y < (m+1)Ay
then
Z(F Oy Omasr < Z(P) S Z(FoH Ongyhr.
where Ar? = Ax2+Ay?. Therefore:
[ZPZF) € OmayAr.

OmaxA7 = u-rmx\Isz‘*'Ay ’= V(Ernlx Ax )2+(amn Ay)
But recalling that:

(4 [4
Ar s —— Ay —5—,
W20y’ " 220ty

yields the final resuit:
e’ e e
IZ(PZ () 5\/ Tt

This theorem is suitable for the slope-limited surface with
< Oty If 0> Oy, then an exact reconstruction within an error e
from samples will not be possible.

If the allowable error is normalized, ¢ = 1. Then the sampling
intervals should satisfy:

Ax € U2V204,, Ay < 12V20,,,.
Corollary. If the sampling intervals are

Ax £

e [
. Ay s ,
Moy 0T e,

then, the maximum error of the reconstructed surface is o, Ar .

We can use the concepts and theorems of differential geometry
on a discrete surface which satisfies the sampling theorem. If Z is
smooth on a discrete surface, then we can use equations derived for
the continuous case to calculate the mean, Gaussian, maximum and
minimum curvatures.

5. Shape Information Distribution

5.1. Shape Equivalence

Definition. The shapes of two objects in E? are identical provided
that their surfaces are congruent. The shapes of two objects in E2 are
identical provided that their edges are congruent. Therefore, from a
mathematical point of view, shape identification is a test of the
congruency of surfaces for 3-D objects, or congruency of edges for
2-D objects,

Two surfaces @ and & are congruent provided there is an
isometry F of E® that carries @ exactly onto ®. Thus congruent sur-
faces have the same shape -- only their positions can be different.

5.2. Shape Density

Shape information is not homogeneously distributed on the sur-
face of an object. The human visual system is particularly sensitive to
certain regions of an object surface or edge for shape identification
purpose. Examples of such regions are corners, holes and boundaries.

The sharper bending regions of a surface contribute much more shape
information than fiat regions do.

We introduce the concept shape density, Ds, to measure the
shape information at a point on the edge or surface. It is reasonable
to assume that the shape density Ds should be a function of the princi-
pal curvatures:

Ds = f (ky, ko).

where k, , k, are the maximum and minimum curvatures. Further-
more, it is reasonable to consider that the shape density should in-
crease in value if either of the magnitudes of the orthogonal principal
curvatures are increased. Based on these considerations we introduce
the following definition for shape density:

Definition. If P is a point on a surface, let

Ds = k.Y + (ko).
where &, is the maximum curvature and k, is the minimum curvature
of the point P on the surface.

If the minimum curvature k, is much less the maximum curva-
ture, k,«k,, then

Ds = lkyl,
which means that the shape density is mostly determined by the max-
imum curvature.
Definition. If P is a point on a curve, let
Ds = k) + ()

where k, is the curvature and k, is the torsion of the point P on the
curve. Ds is called the shape density of the point on the curve. For
the planar curve in E?, k, = 0; therefore, the shape density is specified
by

Ds = lkh
The shape density at a point is only related to the extent of
bending which is the absolute value of the curvature.
For a surface
k? + k3 = (HH=K P+(H-NH-K
therefore:
Ds = VaH™Z3K ,

where X is the Gaussian curvature and H is the mean curvature.

5.3. The Shape Distribution Funection

We can use the shape distribution function to measure shape in-
formation for a given area of a surface or a given length of an edge.

Definition. The shape distribution function of a given curve is

T2

F(r)y= IDs(r)dr,

£

where r, and r, are the start and end points of the curve. For the
discrete case,

F(ry= ¥.Ds(r).
rEr
Definition. The shape distribution function of a total surface with area
A is given by
F(A)=| [ Ds(s)ds.
SEA
For the discrete case,
F@A)= 3,Ds(s),
5;EA
where s; is denoted the point on the surface.

Definition. The shape distribution function of a subsurface is defined
as:

FR)= j J;RDs(s)ds,

where R is denoted the area of the subsurface. For the discrete case,
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Fig. 1. A synthetic range image of a space shuttle.

N

Fig. 3. The high shape density regions selected by
thresholding. The relative shape distribution
function Fr(R) = 0.452.

FR)= Y. Ds(s),

5;ER
where s; is denoted the point belongs to the sub-surface R.
The relative shape distribution function (RSDF) is defined by

F,(R)=F(R)F(A).

The shape density indicates the amount of shape information at a
point on the curve or surface. The shape distribution function meas-
ures the amount of shape information associated with an edge or a
surface.

6. A Strategy for 3-D Shape Identification

We are exploring the following strategy for 3-D shape
identification which involves the shape density and shape distribution
functions.

1. Pre-process the input range data (filtering and scaling).
2. Calculate the shape density of the input data,

3. Sclect image elements with high shape density for object
identification, i.e., all elements with shape density having a value
geater than a threshold ¢. Calculate the shape distribution func-
tion (SDF) and the RSDF for all selected image elements. Adjust
the threshold ¢ if necessary to obtain a RSDF within a
predefined range.

4. Identify the shapes with an evidence accumulating identification
scheme such as the Hough Transform.

For example, a range image of a space shuttle is shown in Fig-
ure 1. The shape densities of the object are given in Figure 2. The
thresholded shape density is shown in Figure 3, in which the threshold
of Ds is 9.6, F(R)=4173, F(A) = 5779, F,(R) = 0.452. The elements
of the range image which have been selected by high shape density
values are shown in Figure 4.

The selection of only high shape density elements is important
for reducing the computation required for 3-D matching techniques,
such as the 3-D Hough transform, to a reasonable amount. In order to
increase the confidence of identification, it is necessary to raise the
value of the RSDF by decreasing the shape density threshold. For a
given threshold, the higher shape density regions are selected and the
lower shape density regions are rejected to minimize the computational
requirements.

Fig. 4. The range image of high density regions.

Conclusion

The shape density function, which is based on the principal cur-
vatures of a surface, has been introduced and its application as an in-
terest operator for shape identification has been outlined.” The sam-
pling constraints on a slope-limited surface for accurate representation
have been derived. This work provides the foundation for an image
data reduction scheme for use with a Hough transform based 3-D ob-
ject identification system.
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