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Abstract

This paper presents a novel and computationally efficient way of
modelling images that result from the projective distortions of homogeneous
textures laid on illuminated 3D surfaces, as they are seen by a camera. We use
a "homogeneous” Gaussian Markov Random Field (GMREF) for modelling the
texture, The GMRF has been shown (o faithfully reproduce a vast class of
micro and macro planar "homogeneous” image textures. To transform the
GMRF's into 3D texture models, we reflect in the GMRF probability
distribution function, the functional relationships that exist between the image
of a homogeneous textured plane when viewed head-on by a camera (with
either "orthographic” or “perspective" geometry), and the image produced by
the same plane when it is given an orientation relative to the optical-axis of
the camera. The resulting 3D texture model is a GMRF whose parameters are
the texture characteristics and the surface shape, and the camera model. The
model is synthesizable, and hence one can visually judge its goodness in
capturing the projective distortions (seen by a camera) of a texture laid on an
illuminated surface. It is simple and computationally efficient. By locally
approximating 3D surfaces by planar patches, the 3D model is also suited for
analytic surfaces, or surfaces which are specified by an array of surface normal
directions at different points on the surface. The basic modelling concepts are
also used in extracting shape information from texture. Shape parameters
cstimation is posed as a maximum likelihood estimation (MLE) problem.

L Introduction

The inference of the shape of a textured 3D object from its image (or
images) has been the concern of many researchers for the past two decades.
Shape parameters can be calculated from regular patterns on the surface or from
texture gradients. Gibson [1] first proposed the texture density gradient as the
primary basis for surface perception by humans, Bajcsy and Lieberman [2)
used the two-dimensional Fourier spectrum to detect texture gradient as a cue
to depth information.Witkin [3] studied the problem of recovering the local
orientation of known 3D surface markings by studying how the marking
features are transformed by the projection operation, Davis et al [14 developed
an efficient algorithm for recovering local orientations of known 3D surface
markings. Ikeuchi [5] also exploited regular patterns on the surface to extract
shape information. He used a spherical projection perspective imaging model
and studied the local distortions of a repeated texture pattern due to the the
image projection, Kender [6] obtained the orientation of a 3D planar surface
from the images of parallel edges drawn on it. It relies on an abstract
representation (the normalized textural property map) of the effects of surface
orientation on a particular texture property, and prestored information about a
particular texture pattern. Ohta and his co-workers [7] obtained the a 3D planar
surface, by computing a 2D affine transformation which approximates the
distortion of the texel patterns under perspective projection. Finally,
Brzakovic [8] obtained the orientation for planar surfaces with regular or
globally regular directional textures, and perspective camera model. All these
cues, no doubt, are essential for surface or object information extraction. A
good image model should incorporate all these cues. The emphasis in this
paper is on texture cues.

Texture is usually viewed from one of the two prospects, either structural
or statistical. In this paper we look at textured images as realizations or
samples from parametric probability distributions on the -image space. The
model that we use is the Gaussian Markov Random Fields (MRF). The reason
for that choice is given in section II, The properties of the MRF's and their
use in filtering, image modelling and segmentation has been treated in various
papers [9-22). They were shown to be a compact representation for a variety of
textures of interest.

The paper is organized as follows. In section II, we introduce the
underlying assumptions about the scene and the image formation process. In
section III the proposed texture image model is introduced. In 1V, we discuss
the 3D texture model. Surface recognition discussed in section V. The
experiments are presented in section VI.

II. Problem Statement and Assumptions
The goal of this paper is to model images that result from the projective
distortions of "homogeneous" textures laid on 3D surfaces, as they are seen by
a camera. By a "homogeneous” surface texture we mean a homogeneous
texture on a rubber planar sheet (i.e., a 2D homogeneous planar texture) which
has been laid down on the surface without any local distortion or folding (see
figures 6-7 for examples), i

‘We assume that the surfaces in the scene are mainly Lambertian, i.e., they
reflect equally in all directions. Hence, the intensity value of a point on a
surface which is viewed from different directions should be the same. Small
but noticeable differences between gray-levels recorded in two images wou%d
not affect much our results as the textural characteristics of the surface remain
essentially unchanged. We assume a camera with either a pin-?lole or an
orthographic geometry, with its optical-axis parallel to the z-axis, and the
image plane parallel to the x-y plane. A viewer centered description for the
scene is adopted.

I11. 2D Homogeneous Texture Model

For modelling the homogeneous planar texture, we use a Gaussian
Markov Random Fields . The reasons for that choice are: (i) they are synthesis
models that are capable of producing textures that match and capture amazingly
well many man-made as well as natural micro and macro textures [ 2, 15, 19,
21]; (ii) the parameters (or their associated sufficient statistics) of the model
are measurable from data samples and the appropriateness of the modpl can be
assessed objectively by hypothesis testing; (iii) minimum error classifiers are
readily built.

III.1 Gaussian Markov Random Field (GMRF) Structure

Let gjj be the intensity at pixel r = (i.j), gbe the image data, and g(r)
the data not including the data at point r. The GMREF is described by the
following noncausal difference equation

gr=+ Z Bry @)+ 0r 3.
veDp

where Br.y = B.(r-v) (which follows from the symmetry property of of the
autocorrelation function associated with g, Rg(m ) =Rg(-m,n)),and Dpisa
neighbor set given by

Dp={v=(kl) :llr-vI2<Np , and ver ) 3.2
where p is the order of the process and Np the maximum square of the
distance from point rto v. {nr} is a Gaussian noise sequence with zero mean
and autocorrelation function given by

s ifv=r
Rp(r,v) = - 2 Bry, if ve Dp
0 otherwise 3.3

The joint density function of g is p(g) ~ N( U,92 ¥~1), where U= 1 is
the mean vector, and ¢~2% is the inverse covariance matrix of g. The GMRF
is parametrized by a relatively small parameter set ¥ = (L, cp2, B), with
®=B10, Bo1, B11 . B1,~1., ..). Under a toroidal lattice approximation @—2%
is circulant which implies that G = DFT(g-U) is a white Gaussian field
[11-13],

D(G) = TI(1/27 N28;)1/2exp{-(Z 1 Gjji2 / 2N2 S3)) 34

1,j ij

where Gij is the ij component of G and N25i~ is the power spectral density
N28(wy,09) (or S(zy=eV-101 7= eV-1 02 y) 19, 11] of the GMRF evaluated
at @1=2xi/N , and w9 = 2xj / N.

S(wy,09)=02/[1- ZBng,ESxp {-N-1 (m @y +n 0] 3.5)
P

(m,
It can be computed anywhere on the unit circles in the zy-plane and z,-plane.

1V. 3D Planar Texture Model Structure

In this section we show how to transform the 2D homogeneons GMRF
texture model parametrized by ¥ into a 3D texture model whose structure
reflects the foreshortening texture distortions due to the orientation of the
plane relative to the camera, and the camera geometry. In particular, we show
the functional relationships that exist between the image of a homogeneous
textured plane when viewed head-on by a camera, and the image produced by
the same plane when it is given an orientation relative to the optical-axis of
the camera, for different camera geometry (orthographic and perspective).

IV.1 Planar Surface -- Orthographic Projection Camera Model

Let o and 7, shown in figure 1, be the slant angle and the tilt angle of the
planar surface relative to the viewer coordinate system. If the surface is parallel
to the image frame and has no slant or tilt, then the texture in the image
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coincides with the texture on the surface.The effects of the slant and tilt of the
plane on the image texture under orthographic projection can be easily derived
as follows. Consider a texturéd plane which coincides with the image plane
(i.e., the uvw object plane coordinates and the xyz image coordinates coincide,
and where the normals to the plane are along w and z). To realize a slant of &
and tilt of 1 of the object plane relative to the image plane, we first rotate the
object plane by an angle (n1/2-t) about the w-axis. This results into the
rotation of the uv axes, with the w-axis remaining the same. We then rotate
by an angle of -o the object plane about that new u-axis. Here the vw axes are
changing, and the u-axis remains unchanged.These two rotations realize the
desired plane slant and tilt, however, the texture on the plane has been rotated
by an angle of (1/2-1). To undo this effect, we rotate the object plane about

the new w-axis by an angle (t-m/2). The rotations are shown in figure 1.
z

w

Figure 1
A point with coordinates (u v 0)t relative to the uvw coordinates system
will have its xyz coordinates given by
x] [ st cost O[1 O O simg ~cost 0]/ u

y|5 —cost sint 010 cosg sing || cost simt O v 4.1

z 0 0 H0-sinceossf 0 O 140

As the point on the object plane is orthographically projected on the
image plane, its image coordinates (i j)t are simply (x y)! which are given in
(4.1). Hence,

i o] | 1-poos’t psinost [ u :

H:[T][ ]: peosT P ZSTH 42
] Y0 | psinwost 1-psin’t ¥

where p = (1- coso). (4.2) is also reported in [25]. .
The effects of the orthographic projection is a scaling (compression) by cosc
of the texture in the direction normal to the rotation axis determined by
(sce figure ), i.e., the texture appears uniformly compressed by cosg in the
dircction normal to the rotation axis determined by 1. Because of the linearity
of the transform in (4.2), the resulting texture is homogeneous.

I1V.2 Likelihood Function for the Texture Data on the Slanted
and Tilted Plane

Let g, be the image data of a homogeneous textured plane when viewed
head-on. g, be modelled by a GMRF, with parameter set ¥y . The
probability distribution function of g, is p(g, | ¥) and is given in section IIL
Let gy be the image data of the same plane when the plane is slanted, and tilted
(o, 1) with respect to the viewer. gy is a distorted version of g, and should be
paramctrized by ¥, as well as G, 1.

For a texture on a plane with some slant angle ¢ and tilt angle 7, a point
rt=(x y z)t = (u v 0)! on the plane maps orthographically onto the image
plane according to the linear transform in (4.2). Since a linear transform
(scaling) in the spatial domain correspond to a scaling (linear transform) in the
frequency domain, that implies that under the projection model, the power
spectral density associated with the texture image on the slanted and tilted
plane is

slp = [det{TN12 SO, = [det[T]1% $O(py ¢ @3)
with

fo = [T1f,and fl= @ j)t. @.4)
and where S9, is given in (3.5) with © =(2r /N) f;, This can be seen as
follows. Let gr{ry) be the image intensity of the point rt = (i j)! on the image
plane, and let g,(ry) be the image intensity of the point ryl= (u v)t on the
object plane (when viewed head-on). Then, if r; = [TIrg (and hence ry=
[T1-1rp), it follows from the Lambertian reflection assumption that

21D = goro) = o1 Ay - @5)
Taking Fourier transform yields
G(N = Go(fo) = det{T] Go([T1 ) “.6)

Squaring (4.6) and taking expectation yields the result in (4.3).

The likelihood function (under a torus structure) of the DFT of the image
data gy is given by

p(ep=p(Grito0) = EaN2STyWexp(-RIGHRINST)  (47)

where SIf is given in (4.3).

Note that no interpolation is needed to compute SOy, as the power
spectral can be computed anywhere on the unit circles in the zj-plane and
27-plane as explained in section IIL

IV.3 Perspective Projection Camera Model
The orthographic camera geometry model is a good approximation to the
perspective projection model as long as the scene depth is small relative to the

average distance from the camera. Since the perspective projection of a point
on the planar surface depends on its depth relative to the image frame
coordinate system. The transformations in (4.2) are now nonlinear and
according to [23]

i=(f/f2) u 4.8)

j= (f/fz)v 4.9)
where f is the focal length of the camera, and z is the depth of the point (i j z)!
on the slanted and tilted plane. z is a known function if i, j, o and 1. The
result of the transformations in (4.8) and (4.9) is a nonhomogeneous planar
texture which can not be modelled by a homogeneous GMRF.

1V.3.1 Affine Transform Approximation To Perspective
Projection :

To overcome the problem of the non-homogeneity of the planar texture
under perspective projection, we approximate the perspective projection by the
affine transformation due to Ohta et al [7], and used in Brown's et al [25]. The
result of the approximation (as shown shortly) is that within a local patch a
point on the object plane maps onto the image point according to a linear
transform, and hence a locally homogeneous texture patch in the image plane
(as discussed in IV.2). The non-homogeneous texture is approximated by
piccewise homogenecus ones. For a relatively small patch on the plane, this
results in a very accurate approximation to the perspective projection.

The projection is shown in figure 2, for a point P (on the object plane)
which is part of a local patch on the plane whose centroid has BA, BB, and -B,
as the x, y, and z coordinates respectively. P has coordinates (x y z)t with
respect to O, and (u v O)t with respect to uvw coordinate frame centered at o".
P is first projected onto the plane which intersects the object plane at point
0", and which is parallel to the image plane. The projection is along the O
0'0" line. This projection approximately mimics the skewing effects
associated with the perspective projection. The projected point Py on the
8-plane has coordinates (x1 y1 -B)t with respect to O. Py is perspectively
projccted on the image plane onto the point Py, whose coordinates are x2¥2
)t with respect to O, and (i j 0)t with respect to O'.

z

. Figure 2
A point (u v)ton the object plane (-z = px + qy +d) maps onto an image
point (i j)t according to the linear transform

H ~ [T]H _] [I—Ap —Aq} 1-peos’t psinmtoost N
j v BL-Bp 1-Bg psimanst 1-psin’t “.10)
where p and q are given
p = tanc cost @11
q = tano sint @12
and f equals to
_ d @13
b= f(1-Ap-Bq)

Finally, note that A and B in (4.10) are related to the image centroid
coordinates of the patch Ay, and By as follows

A=(sAp)/N

B=(sBj)/N (4.14)
where s is ratio of the side of the image frame relative the distance of the focal
point to the image frame of the camera, i.e.,

s=N/f 4.15)
Realistic values of s would be 1/2 or 1/4.

The likelihood function of an nxn square image data patch with centroid
(A,B) is given in (4.7) but with the matrix [T] given in (4.10), and with the
(1,j) coordinates expressed relative to the center (A,B). The joint likelihood
function for the whole NxN image texture is approximated by

p(gr)= l'llcp(Gk!’r.cﬂ, Ay, By) @.16)

where Gy is the DFT of an nxn image data patch with centroid (Ag, By).
Remarks : (i) The transform in (4.10) is different than the one reported in
Ohta's and Brown's papers. It is a point by point mapping that results in
having the object coordinates and the image coordinates coinciding if the slant
and tilt were undone. The determinant of the transformation matrix in (4.10)
and in Ohta's paper are one and the same for f = -1; (ii) When the window
centroid is collinear with the camera axis (i.e., A = B = 0, the transform in
(4.10) is the same as for the orthographic projection transform given in (4.2)
if the (1/B) factor is discarded.



1V.4 Maximum Likelihood Estimation (MLE) for the Slant and
Tilt o

When 4 is known, the MLE for & and T are obtained by maximizing
(4.7) (for orthographic camera model) or (4.16) (for perspective camera model )
with respect to ¢ and T. When ¥ is not known apriori, then the problem
becomes unidentifiable, and neither the original texture nor ¢ and T can be
recovered just from the projective relation. Any value of o and ¢ deﬁ.nes a
possible surface orientation and a possible reconstruction of the unp_rOJcc.ted
texture. That means that there will be a family of possible te).(ture/onemauon
pairs {(T1,01): (T2,02)-.., (Tn.On)) that can generate the image texture T
(see figure 3). The projection can be thought of as many-t0-one mapping.

o000
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Frontal View

000
000

Same projected texle
from two differant
textures with different
lant, tilt, and scale.

Figure 3

V. Generalization to More Complex Regular Surfaces

By locally approximating 3D surfaces by planar patches, the 3D' planar
texture model is also suited for analytic surfaces, or surfaces which are
specified by an array of surface normal directions at dif'ferem points on the
surface. The image data is partitioned into nonoverlapping square windows
which are assumed to emanate from locally planar patches. For each such
window, the plane orientation parameters are computed as explained in section
IV. The resulting texture is a 3D surface texture model. In this paper we
concentrate on the subclass of quadric surfaces, namely, plane, cylinder, and
sphere, and show how to classify a given image patch into one of these
surfaces, which are assumed to have the same "homogeneous" texture (see
figures 6-7).

V.1 Surface Patch Classification from Surface Normals --
Known Texture Case

The problem here is to classify a given surface patch into one the three
surfaces from a set of computed unit normals Ni's. There are many ways of
classifying an image patch based on the unit normals (see for example {26]).
In this paper we elected to use a least square method, where it has been
assumed that the ¢ and © components of the unit normal N (whose coordinates
in spherical space are (1 ¢ T) = (1 n)), have white Gaussian perturbation which
are independent of each other, i.e.,

o(x.y) = olx,y)+ w1(x,y) . (68}

wUxy) = wxy)H+ waxy) (52
where

wex.y) ~M(0y2),c=1,2 53)

ok(xk,yk) and x(xk,yk) are the true surface slant and tilt, respectively,
evaluated at the window's center (xk,yk). k= {ok(Xk.Yk),Tk(Xk.YKk)}is a
function of the parameters of the underlying surface. Its equation can be derived
in a straight forward manner from the equations of a plane, cylinder, or sphere.
If the parameters of the surface are not known beforehand, we can estimate
them from the given nk's.

The surface patch is classified as "plane” (P), "cylinder” (C), or "sphere"
(S) using the decision rule

class = arg[ max p(@ | §,*, w)]

we{PCS}

where 0 = (1], n3,.., nM), and $,* is the maximum likelihood estimate

(MLE) of the surface parameters under the assumption that the surface type is
®.

4

1V.2 Surface Patch Classification -- Unknown Texture Case

As in the case of a single planar surface, the surface true orientation of the
planar facets that constitute the surface can't be recovered uniquely
when the textured model parameters ¥ of the homogeneous rubber sheet are
unknown apriori. Despite that, we are still able to recognize the surface type
(e.g., plane, cylinder, or sphere), and estimate the radius (of sphere and
cylinder). For a given surface patch within an M-window neighborhood, we
consider the data in any of the window (say window m), and obtain the pair
(T*,0%) that will best fit the data in that window by maximizing the
likelihood function with respect to T =7, O = (0, 7)

max p{gml ¥, G, 7) (5.5)

Y.6,T
where g is the data in the mth window. Let T* =¥*, and Op* = (Gm*,
Tm*). Suppose the real texture/orientation pair were Ty = ¥, and Om¢ = (Gmt,
Tmt), then the use of the wrong texture has introduced an offset Opff =
(ooff.Toff), i.e.,

Omt = Om* + Ooff (5.6
For any window k ( gk) in the M-window neighborhood image patch, we
compute the MLE for Og,while imposing the T* texture model

max p( gk | T%,0x ) [6N))]

Ok

Because the imposed texture is not the true one, the estimated orientation Og*
is offset from the true Okt by Opff. Despite, the offset, the relative orientation
of the windows are invariant to the use of the wrong texture. That is to say

Omt - Okt = Om* - Ok* (5.8)
Hence, we can recognize the surface type by exploiting the relative orientation
of the windows associated with the image patch. For a plane, all the local
facets will have the same orientation O (although it might not be the true
one). For a cylinder, the facets will exhibit a symmetry with respect to an
axis. For a sphere, the facets will exhibit a symmetry with respect to a point.

VI. EXPERIMENTS

In the first part of the section, we show the goodness of the 3D texture
model in capturing the texture distortions. Figure 4 shows the effects of slant
ant tilt on a planar texture under orthographic and perspective projection,
respectively, Figure 4b shows a synthesized frontal view of the homogeneous
"raffia” texture shown in figure 4a. The GMRF parameters were estimated
from a 64x64 data window of the image shown in figure 4a. Using the
estimated parameters from figure 4a, and using the transform in section IV.1,
figure 4c shows the orthographic projection of the texture when the plane has
a slant of 60°, and a tilt of 0°. As expected the generated field underwent a
compression in the direction which is perpendicular to the line that sustains a
0° angle with the x-axis (i.e., the y-axis). In figure 4d, we shows the
orthographic projection of the texturc when the plane has a slant of 60°, and a
tilt of 45°. As expected the generated field underwent a compression in the
direction which is perpendicular to the line that sustains a 45°. In figure 4e, we
show the texture under perspective projection when the plane has a slant of 60°
and a tilt of 0°, and using the linear transformation in section IV.3.1. In figure
4f, we show the perspective distortion of the texture in figure 4a, when the
plane undergoes a slant of 60° and a tilt of 45°. It is interesting to note that the
depth effect due to the plane going away from the viewer is quite noticeable.
In figure Sc, we show the perspective projection of the "water” texture shown
in figure 5a (whose synthesized frontal view is shown in figure 5b) when the
plane undergoes a slant of 60° and a tilt of 0°. It is interesting to note that
unlike the raffia texture, the water texture does not have a strong directionality,
and hence the convergence of the lines towards the horizon phenomenon that is
observed in the raffia case, is absent here. Nonetheless, the blurring and fading
away of the texture as we move away from the observer is quite noticeable. In
figures 6-7, we show the rendering of the texture on different surfaces under
orthographic and perspective projections. In figure 6a, and 6b, we show the
raffia texture rendered on a sphere of radius 100 pixels, and which is about 200
pixels (in the z-direction) away from the viewer. In figures 7a and 7b, the
simulations in figure 6, are repeated for a nail object that consists of a cylinder
whose axis is parallel to the y-axis, and a sphere.

The second part deals with the shape from texture extraction problem. We
ran experiments on the real surfaces shown in figure 8 These were : (a) a
cylinder covered with grass texture; (b) a cylinder covered with paper texture;
(c) a plane covered with paper texture; and (d) a sphere covered with fabric
texture. The classification of an image surface patch for cases (a) - (c) were in
favor of the correct surface; and the distribution of the estimated slant and tilt
in the different windows were consistent with the expected ones. For case (d),
the classification was again in favor of a sphere, but the estimated slant and
tilts in some of the windows were not consistent with the expected ones. The
main reason behind that was that the fabric has been laid on the sphere by
hand, resulting in folding, stretching, and distortion. Consequently, the image
textures in some of the windows were not consistent with how they should
appear if they emanated from patches on a spherical surface.

_Original texture Synthesized texture -- Frontal View
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