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RESUME

La methode de 1D filtre propre est étendue & faire le plan de FIR filtre de dimension deux. Par minimizer
la mesure d'erreur quadratique dans le band de 2D fréquence, le vecteur propre d'un matrix convenable est

calculd pour l'obtenir les coefficients de filtre.
dans le sense du moindre carré.
pour montrer l'efficacité de cette methode.

Cette methode est non seulement simple et aussi optimal
Quelques exemples numeriques de 2D filtre de forme quelconque sont donné

SUMMARY

The 1D eigenfilter approach is extended for designing two dimensional FIR filters.

By minimizing a quad-

ratic measure of the error in the 2D frequency band, an eigenvector of an appropriate matrix is computed to

get the filter coefficients.

This method is not only simple and also optimal in the least square sense.

Several numerical design examples of 2D arbitrary shape filters are illustrated to show the effectiveness of

this approach.

I. INTRODUCTION:

Recently Vaidyanathan and Nguyen introduced a
new method to design 1D linear phase FIR digital
filters by eigenfilter [1], which is formulated by
minimizing a gquadratic measure of the error in the
passband and stopband. The method is based on the
computation of an eigenvector of a real, symmetric
and positive-definite matrix, and the corresponding
eigenvector of the smallest eigenvalue is the desired
filter coefficients we want. The advantage of this
eigenfilter approach over the MeClellan-Parks
algorithm [2] is that it is general enough to incor-
porate both time and frequency domain constraints;
also the design time is comparable to the McClellan-
Parks algorithm.

In this paper, the 1D eigenfilter approach is
extended for designing two dimensional FIR filters.
‘The method is proposed by minimizing a quadratic
measure of the passband and stopband error in the 2D
frequency domain. The total error function can be
formulated as

E=(1-a)ff[D(w1,w2)—H*(w1,w2)]2dw1dw2+
p

a{g[H*(w1,w2)]2dW1dw2

=(1—u)Ep + oF (m

where D(w1,w2): Desired frequency response.

Actual amplitude response of the 2D

H*(w1,w
filter H(Z1,Z2).
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p: Passband error.
Stopband error.

Passband region.

Stopband region.

Parameter controls the relative accuracies
of approximation in the pass and stopbands,
and is in the range 0<a<1.
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Eq.(1) can be reformulated properly such that it has
the following form:

E = Atoa (2)

where t is the vector transpose operation, Q is a
real, symmetric and positive-definite matrix; and A
is a real vector related to the 2D filter impulse
response h(n1,n?) in some manner. By Rayleigh

Principle [3], the eigenvector A associated with the
smallest eigenvalue of matrix Q minimizes the total
error E.

This approach is optimal in the Jleast square
sense, - and also can design any arbitrary shape 2D
FIR filters. 1In Section II, we present a detailed
discussion of this design technique, and some typical
2D FIR filter design examples are given in Section
ITI. To show the flexibility and the effectiveness
of this approach, we present some special 2D arbi-
trary filters in Section IV for demonstration.
Finally Section V gives a summary.

IT. DESIGN TECHNIQUE:

A 2D FIR filter with the impulse response

h(n1,n2), n1=0,1,...,N1—1 and n2=0,1,...,N2~1 has a
frequency response
N1—1 N2-1 . .
=Jnqwy ~Jngu, .
H(wj,w2)= b b h(n1,n2)e e (3)
n1=0 n2:0

Assuming N1 and N2 are odd, and the impulse
response symmetry due to linear phase condition is
N.-1
-1,n.) n,=0,1,...,—5—
12 1T T2
(&)
N,-1
2
n2=0,1,...,~—§—

—_

h(nj,n2) = h(Nj-n

h(n1,n2) = h(n,Ny;-n,-1)

then Eq.(3) can be rewritten in the form [4]

N,~1 N,-1
M e
BRI
£ z z
n1=0 n2:0

a(n1,n2)cosn1w1cosn2w2

H(w1,w2)ﬁe

Nyt aNp=T
2 T T2 BH¥ (14, Wy) (5)
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where H*(w1,w2) is the amplitude response of H(w1,w2),
and a(nT,nZ) is related to h(n1,n2), the filter

impulse response, by

N.-1 No-1
1 2
a(0,0)=h(—5,~ 5~
N1—1 N,-1 N2-1
a(O,nZ):2h(——2—-,—2——n2) 2’)2=1,...,'—2— (6)
N1—1 N2—1 N1-1
a(n1,0):2h(—§-——n1, > ) n1:1,...,—2—
N1—1 N2—1 N1—1
a(n1,n2):4h(——§-—n1,—2—-n2) 1’1,]:1,...,—7 and
n,=1 Hg:l
27t 2

For simplicity, let N1=N2:N and define

1=0a(0,0,a(1,0),...,a51,03tac0,1),...,ad5L, 1)

, N-1 N-1 N- -
a0, a0, e BN (e
and

- N-1 )

bkw1,w2)=L|,COSW1,...,Cos—§—W1:COSWZ,COSW1COSW2,

-1 T
-+ +1COS 5 W COSW |-+ - | COST5W 5,
N-1 N-1 N-1 t
COSW,COS™5-W,, + + + ) COS™5- W, COS 2] (79
Hence we can write the amplitude response H*(wq,wg)
as
t
% - .

H (w1,w2)-A C(w1,w2) (8)
Then from Eg.(1) and (8), the stopband erroér can be
defined as

— t . t .

ES~A Lﬁfc(w1,w2) C (w1,w2)dw1dw2]A (9a)

and the passband error is
t, ..
Ep:A {fé(c(w1',w2')—C(w1,w2)][C(w1',w2') -
t
Clwy,w,) ] dw, dw,} A (9b)

where (w1',w2') is the reference frequency point in

the passband we choose to approach the passband to
this desired reference frequency response, 1i.e.

t .
D(wT,w2):A C(w1',w2'),1n Eq.(1).
This enables us to write the total error E as a
quadratic in A, this will lead to the eigenformula-
tion E:AtQA, and the matrix Q is

Q:(1—dl§£[C(w1',w2')-C(w1,w2)][C(w1',w2')—

t \
C(w1,w2)] dw1dw2+a{gC(w1,w2)C (w1,w2)dw1dw2
(10a)
For N odd, the size of matrix Q is (N;J)Zx(ﬂ‘zﬂ)z, and
the elements of Q are given by

-
gt y=2 - .
Q(n',m")= . G{[C(w1',w2') cosn W, cosn2w2]
[C(w1',w2')—cosm1w1 cosmzwe]dw1dw2+

o
Eféf(cosn1w1 COSN W, COSM W, cosm2w2)dw1dw2,

n':n1xygl+n2, n':O,1,...,(N%l)2~1,
N+1 N+1.2
m'=m1x-%—+m2, n'=0,1,..., -%}) -1 (10Db)

Once the matrix Q is found according to the
design requirement, we can compute the eigenvector A

which corresponds to the smallest eigenvalue, it is
easy to get the filter impulse response h(n1,n2)
from the eigenvector A by Eq.(6).

The similar procedures can be applied in 2D
cases for N even, the amplitude frequency response
now is

N/2 N/2
% = 1 -1
H (w1,w2)-n {1 nZ_1a(n1,n2)cos(n1 2)w1cos(n2 2)w2
17 2 (11)
N, N - N
where a(n1,n2)-4h(2—n1,2 n2), n1_1,2,...,2 and
N
02:1,2,...,5 (12)

ITI. 2D FILTER DESIGN EXAMPLES:

Example 1: Design of 2D circular and elliptical band-
pass filters.

wp1+wp1
2
quency point. The specification for this bandpass
design is shown in Fig.1(a), and Fig.1(b) gives as a
23x23 2D circular bandpass filter with wpiswp2:0.36n,

,0) as the reference fre-

We take (w1',w2'):(

1= 1-
Mg, =0.64m W

Fig.1(c) shows a 26x26 2D elliptical bandpass filter
with wp1:O.3n y wp1'=0.5”n, WST:O'16H’ ws1'=0.7n,

- - - t—
_w32_0.16n s M g =W =0.84 ¢ ,

Wp2:0.5n, wp2':0.74n, w52:0.36n and wse':0.9n.

Example 2: Design of 2D fan type filter.

Fig.2(a) presents the specification of a 2D fan
filter in which W is the stopband cutoff frequency,

and the frequency response of a 23x23 2D fan filter
is shown in Fig.2(b) with ws:0.16n.

IV. CONCULSIONS:

In this paper, the 1D eigenfilter approach is
extended for designing two dimensional FIR filters;
This approach is simple and powerful, we get very
good performance in the resultant 2D filters.
Several numerical design examples are illustrated to
show the effectiveness of this approach.
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Fig.1(p) A 23x23 2D circular band-pass filter with
=0.361, w' =w',=0.6Ux,
=0.88xn .

pl1 "p2
“s2

=0.16n, wi s

-

stopband

Fig.1(a) Specification of 2D circular and

clliptical

band~pass filters in Example ].
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Fig.1(c) A 26x26 2D elliptical band-pass filter with

wp1:0.3u, w'1=0.5UH, w31=0.16n, wé1=0.7:
wpzzo,su, w'2=0.74n, w32=0.36n, w'2=0.91.
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Fig.2(a) Specification of 2D fan type filter in Example 2.
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Fig.2{b) A 23x23 2D fan type filter with w



