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ral/frequency version of SST can be performed as a pre-
processing to a temporal also version of HRT, yielding a
matrix with rank equal to the number of replicas in the ob-
servations. This processing is dual of the conventional SST,
and so, it requires a condition that is dual of the condition
given above: N > 2P, where now N is the Time/Bandwith
product of the received signal, for the case of P coherent
replicas of a single source.

Methods that consider joint time/space processing of the
received waveform are also available. One such technique
is CSSM [7], which resorts to frequency smoothing to elim-
inate the ambiguity due to the possible coherency of the
sources. This method is derived in a very general setting,
where only asymptotically (when the number of frequencies
tends to infinity ) is the ambiguity eliminated. However, if
we restrict attention to the case of equispaced processing
frequencies, and to multipath propagation of several radi-
ating sources, bounds on the number of detectable sources
can be found, which are a function of both the array size
and the number of temporal degrees of freedom in the wave-
form.

The paper is organized as follows: In section 2, we state
two Facts concerning the properties of smoothed matri-
ces that will be repeatedly used to establish the bounds
mentioned before. In section 3, we derive bounds for SST,
and give a geometric interpretation of the general bound in
terms of the dimensionality of the intersection of possible
estimated signal subspaces. Section 4 is devoted to bounds
for the CSSM.

A detailed version of the woik reported here will be pre-
sented elsewhere.

2 Basic Facts

Let A be the matrix that represents in a given basis the
linear transformation .4 from C? into itself, where C is the
field of complex numbers. A subspace i/ C C? is said to
be an invariant subspace of A iff
AU CU, <= Aveld, Yvel. (1)
It can be proved (see, e.g. [1]), that invariant subspaces
of diagonal matrices of distinct diagonal entries are those
generated by sets of euclidean vectors (with a single com-
ponent different from zero), i.e., an element of a proper
invariant subspace of a diagonal matrix must have at least
one of its components equal to zero.
From this, and the fact that the eigenvectors of a
semidefinite positive matrix which are not in its null space
cannot all belong to the same invariant proper subspace

of a diagonal matrix in the conditions above, the following
can be proved:

Fact 1 ([5]) Let S > 0 be a (P x P) Hermitean matriz
of rank v with nonzero diagonal entries, and D a (P x
P) diagonal matriz with distinct nonzero diagonal entries:
Di; # Djj,i # j. Then, for M > P — r the matriz S
defined by,

§= ka—l S(DH)k—l (2)
k=1

D

has full rank P.

Besides its semi-definite positiveness, this bound as-
sumes no particular structure for S. When S is block di-

agonalizable by a permutation matrix, a tighter bound can
be found:

Fact 2 ([5]) Let D be a diagonal matriz with distinct
nonzero diagonal entries, and S a (P x P) Hermitean
matric with nonzero diagonal entries which is block-
diagonalizable by a permutation matriz. Further, let £ be
the number of diagonal blocks, n; be the dimension of the
i-th block, and r; its rank. For

M > max (n; — 1), 3

the averaged matriz given by Eq.(2) has full rank P,
: o

In the following sections, these two facts are used to
derive the bounds for the number of sources detectable by
specific smoothing techniques.

3 Narrowband/Spatial
Processing

Conventional narrowband (NB) HRT are based on an or-
thogonal decomposition of the observation space in signal
and noise subspaces. This decomposition is obtained from
eigendecompostion of the sample covariance matrix that,
asymptotically, has the following form:

R = ASAH + o%% (4)

where A is the steering (K x P) matrix, S is the (P x P)
source vector covariance matrix, and X is the (K x K) noise
contribution covariance matrix.

SST is based on averaging the sample covariance matrix
over contiguous subarrays, yielding a “smoothed” source
covariance matrix [6] that can be described by Eq.(2),
where now, M is the number of subarrays,

D = diag{e/“°™ .. cgfwotPY, )

P is the number of impinging replicas, and S is the (P x P)
covariance matrix of the source vector:

S = E[s(t)s" (2)]. (6)

The goal of SST is to replace S, which for perfectly cor-
related sources is a singular matrix, with S, which, for con-
veniently large M will have rank equal to the dimension of
S, independently of its rank. Using Fact 1, we conclude
that for M > P — r, § has full rank P. To obtain the
bound on the number of sensors, we use the fact that with
an array of K sensors, and a subarray size of ¢, the number
of subarrays is K — ¢ + 1. Since each subarray must meet
the resolvability condition of the HR methods (once it is
the size of the “virtual array” seen by the HR method),
the following bound is obtained:

K>2P—r )



This is the general condition that must be met to ensure
that SST yields a full rank source covariance matrix.

Geometric Framework

Consider a uniform linear array of K sensors. Let €2 be
the set of possible DOA’s. The array manifold is defined
as the linear subspace:

A = Sp{a(8)|6 € Q}. (8)

It is said that the array manifold has no ambiguities if the
application from 2 to A is one-to-one. This guarantees
that the DOA can be uniquely inferred from knowledge
of the steering vector. We study below another kind of
ambiguity, related to the inference of a set of P DOA’s
from the observed signal subspace (defined in the sense of
the HRT’s). Namely, we say that there is no ambiguity
in the estimation of P DOA’s when the sets of possible
estimates of the signal subspace corresponding to distinct
sets of P DOA’s are distinct.

Let Qp be the subset of the P-dimensional cartesian
product QF, defined by:

QP={®=[9162...BP]EQPI9i#9j,i¢j} (9)

and let TP be the quotient set of Qp on the following
equivalence relation:

ol=0? 01,0%2cQpVi3;,6}=0} (10
The set T is the set of all possible P-tuples of directions
of arrival for P distinct DOA’s, irrespective of ordering.

Let

A(©) = Sp{a(61),...,a(fp)}. (11)
and Ap = {A(0),0 € TP}

Denote by S the observed signal subspace, for a given set
©4. It is known that S C A(©%). Denote by A7(O) the
linear span of the Vandermonde basis of A(Q) excluding
a(fg):

A1(©) = Sp{a(61),. .., a(8,-1), a(8g41), .. .a(8p)} (12)

It can be shown that § ¢ A?(©°%),q € {1,...,P}.
Let A(©) denote the matrix whose columns are the steer-
ing vectors corresponding to the DOA’s in ©. Define !

6p(0%,0) £ dim Ker [A(©° U ©)]. (13)

If VO # ©°,6p(0%,0) = 0, no observed signal subspace
can be a subset of both 4(9%) and A(®), i.e., $ uniquely
determines .A(©%). There is no ambiguity in the estima-
tion of ©% and ©. If 6p(©%,0) > 0 there are nontrivial
subspaces of A(©%) N A(O) , besides those that are gener-
ated by a subset of the Vandermode basis of both spaces,
expressing the existence of ambiguities in the estimation of
o8,
Let n be the dimension of ©% U ©. From the properties
of Vandermonde vectors,
voro- (U 15E

1we abusively use © U ©? to denote the vector formed by all the
distinct DOA's present in the two vectors and ©! N ©2 the vector
formed by the intersection of their entries . :

We conclude that for an array of K sensors, the sets of
possible signal subspaces corresponding to source configu-
rations with at least 2P — K common DOA’s have empty
intersection. The sets of DOA’s for which there may be
ambiguity are those that have less than 2P — K common
DOA’s. The case that leads to an ambiguity subspace of
larger dimension is n = 2P( 1.e. ©2 N O = { }). For this
case,

dim (A(©°) N A(®)) = 2P — K. (15)

If the observed signal subspace is required to have dimen-
sion greater than this value, then it can only be a subset
of the corresponding .A(©?), and unicity is maintained.

Let now F be a set of possible covariance matrices, and
denote by Ax(©) the set of all possible estimates of the
signal subspace for sources with covariance matrices $ € F
for a given ©. Define Ar = {Ax(0)|O® € TF}.

We say that there is no ambiguity in the estimation of
P sources, with covariance matrix in the set F, if

Ar(@)NAr(©)={}, ©#6% (16)

Consider, the set F* = {S|p(S) > 2P — K}. Since the
dimension of the signal subspace equals the rank of the
covariance matrix, the elements of .4x corresponding to
distinct ©’s are disjoint, and there is there is a one-to-
one relation between the family A7+ and the set of YP.
Note that the condition obtained here, p(S) > 2P — K,
is the same as (7). However, we stress that while this
bound coincides with the resolvability condition of SST,
this derivation is independent of any processing technique,
relying solely on the geometric properties of the array.

Groups of Independent Sources

When there are uncorrelated sources, each one propa-
gating to the receiver through multiple paths, the source
covariance matrix is in the conditions of Fact 2, and the
following bound results:

K > P + max(n; —r;) 1n

where n; is the number of replicas received from source ¢
and r; is the rank of their correlation matrix.

4 Spatial/Temporal
CSSM

In this section we derive a resolvability condition for CSSM
[7). This method assumes no particular array configura-
tion. It is based on the determination of the signal sub-
space at each frequency component of the received signal,
and posterior mapping of each such subspace into the signal
subspace at a reference frequency, assuming that initial es-
timates of the directions of arrival of the replicas are avail-
able. The mapped subspaces are then averaged, yielding a
“smoothed” covariance matrix, which must be a full rank
matrix. Until now, the nonsingularity of the “smoothed”
covariance matrix has been assured only asymptotically (as
the number of frequency components tends to infinity). To
derive the resolvability condition given here, we assume the
following:

Processing:
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1) frequency structure: The frequency analysis is car-
ried out at equally spaced frequencies:

Wy = wp + nAw ' (18)

ii) covariance structure: The vector of source signals
has the following structure:

s@T =[] s')T... st@)T
[i‘%i)T] j[= a(;j)s,-(t - Tij)( " (19)

where the signals s;(t) are uncorrelated, and 7;; is the
propagation delay of source ¢ to the reference sensor
of the array, through path j.

Condition (18) mimics in the frequency domain the uni-
form linear array assumption of SST, whereas condition
(19) sets us in the conditions of Fact 2.

We model the delays {r;;} as deterministic quantities,
and the attenuation factors {a;;} as random variables,
which allows us to introduce some partial decorrelation
between replicas of the same signal received over distinct
paths.

The smoothed source covariance matrix of CSSM is [7]:

N
5= 5. (20)
n=1

where S, is the source covariance matrix at frequency wy,,
Sn = E[S(wn)S(wn)¥] (21)

and N is the number of frequency components (the
time/bandwidth product).
Under hypothesis ii), S, is a block diagonal matrix:

Wi 0
Sn = (22)
0 W
Each block W; in (22) is an (n; X n;) matrix.
Assuming a large time/bandwidth product, the Fourier

Transform of the rearranged signal at frequency w,, is ap-
proximately given by:

Sl (wn)
S(wn) = (23)
54(wn)
where
ef (Bw)Tir 0 a;efworin
§'(wn) = Si(wn) : :
1] ef (Aw)Tin; a;gef@oTini
(24)

Denote by D* the (n; x n;) diagonal matrix in this equation,
and by b; the vector it multiplies. Then,
W; = o} (wa)(D')* By D')™" (25)

where B; = E[b;bf] has rank r;. Using the expression for
W; in (20) we get, for the i-th diagonal block of S

N
[Ski = o¥(wn) Y (D))" Bi(DV)™" (26)

n=1
which has the same structure as the covariance matrix of
SST. The following fact then holds:

Fact 3 Under hypotheses 1) and ii) above, and if :

o the random variables a;; have non-zero mean-square
value (non zero power condition)

e the delays 7;; are such that eiwo(Tin=Tim) #1,n#m,
(distinct diagonal entries of D*)

Then, for
N > _rrllaxe(n,; — ;) 2n
i=1,..,

the matriz S has full rank P =¥, n;. a

This fact implies the following resolvability condition for
this method:

K>P

{ N > maz(n; — r;) (28)

For a single propagating source, the following condition
is obtained:
{ K>P (29)

N>P—-r

where r = p(B).

As it could be expected, given the separate treatment of
the spatial and temporal domains, this algorithm has hard,
separate conditions on the number of degrees of freedom
required in each one.
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