DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989

MAPPING CELP ALGORITHMS ONTO
PARALLEL ARCHITECTURES

M. Schulthei and A. Lacroix

Institut fir Angewandte Physik der Universitdt Frankfurt a. M.
D-6000 Frankfurt a. M., Robert-Mayer-Str. 2-4, FRG
RESUME
Si 1l'on prend une fréquence basse de transmission pour le codage de la langue parlée, les
algorithmes CELP (code excited 1linear prediction) atteignent une bonne qualité, ils
demandent cependant beaucoup d'operations numériques. Pour réaliser 1l'implémentation des

algorithmes sur un chip individuel, il faut appliquer diverses techniques de simplification,
qui effectuent une dégradation de la performance du cedage. Pour arriver a une haute qualité
de 1langue il est donc nécessaire d'utiliser des processeurs paralleles, sOrtout pour Ile
developpement des algorithmes et les applications en temps réel. La contribution analyse la
structure d'algorithmes CELP typiques pour rechercher l'efficacité de 1'implémentation sur
diverses classes d'architectures paralléles. Elle démontre aussi quelques stratégies pour
ltaccélération de l'exécution. Elle conclue par proposer une architecture qui demande un
minimum de hardware.

SUMMARY

In low rate speech coding, CELP algorithms (code excited linear prediction) produce good
quality results but require high computional effort. Single-chip solutions are only possible
by using several simplification techniques that cause a degradation of coder performance.
Hence, for high speech quality it is necessary to use parallel processing, particularly for
algorithm development and real~-time applications. The structure of typical CELP algorithms
is analyzed in order to investigate the efficiency of implementation on different types of
parallel architectures. Some strategies for improving execution speed of the algorithms are
discussed. An efficient architecture with low hardware complexity is proposed.

INTRODUCTION
During the last years, a lot of work has been done The general CELP structure has a very high compu-
concerning efficient, high-quality coding of speech tational load. Implemented on a Cray-l1 supercompu-
at low and very low bit rates (i.e. below ter, typically 100 seconds of CPU time were needed
9.6 kbit/s). A promising method is the code excited for processing 1 second of speech [3,4]. Thus, many
linear prediction (CELP), which uses an auto-regres- strategies have been published in order to reduce
sive model of speech production [1,2,3]. Fig. 1 the number of vrequired operations [4,5,6,7]. A
shows the basic structure of those algorithms. In critical part is the inner synthesis loop, because
general, an innovation sequence (of typically 5 ms every innovation sequence has to be fed through

length) is selected from a codebook CB, then multi-
plied by the gain factor G and fed through the pitch
synthesizing filter 1/P(z) into the short-term pre-
diction synthesis filter 1/A(z). The difference
between original sp and synthesized signal Ek is
weighted in order to make use use of spectral noise
masking effects by filtering with W(z)=A(z/c)/A(z/v)
(0<y<exl) and yields the signal e, which is to be

three IIR filters, which makes it impossible to use
tree search algorithms. By setting a=l, rearranging
filtering and subtraction of signals, a part of the
computational load can be removed from the immer
loop without degrading speech quality. Additionally,
the contribution of previous frames, which is inde-
pendent from the choice of the actual codebook
vector, can be subtracted from the original, so that

minimized by varying the innovation sequence and the
gain and filter parameters. Typically, the coeffi-
cients of A(z) are determined every 20 ms by the
autocorrelation method (Durbin algorithm), in some
cases followed by a parameter transforming algorithm
(e.g. log-area ratios, Iline spectral pairs), and
‘then (vector-)quantized. P(z) is optimized either by
minimizing the residual or the weighted error of the
synthesized signal.

1/P(z) can be omitted if the shortest possible pitch
delay 1is larger than the codebook vector dimension
(fig. 2). By applying some other sophisticated
techniques, it is possible to reduce the inner loop
to the computation of a single scalar product for
every codebook vector, and by using smaller or
multiple-stage codebooks, single-chip real-time
implementations are possible [6].

Yol

538

______.{ " tre analysis

1/P(2) 1/A{2)

S He

Fig. 1: General structure of CELP

___.1 LPC analysls |....... A2)/A(ZY)
H 1/P(2) HVA(z/bf)

1/A(zy)

3 x

1/P(2) H 1/A2) } 8

Fig. 2: Modified structure of CELP

However, small codebooks can only be accepted for
very low rate speech coding (i.e. 4.8 kbit/s and
below). Until now, the quality of the synthesized
speech, particularly for low rates, is severely
degraded by a certain "roughness", which was in-
vestigated in [8,9]. It seems that future improve-
ments of the algorithms will result in increased

computational load. For real-time application and

algorithm development, it is necessary to utilize
parallel architectures to achieve the required
throughput.

ANALYSIS OF CELP ALGORITHMS
Fig. 3 shows a general CELP data flow scheme.

Although it does not represent the complete set of
the numerous CELP variations, it can be considered
as typical. Small data flow (e.g. coefficients)

appears as dotted lines, extensive data flow (e.g.
signal wvectors with length > 100) as bold 1lines;
the bold-lined boxes indicate that parts of the
algorithm with very high computational load. Accord-
ing to this structure, CELP algorithms exhibit the
following properties:

- Nearly all sections are based upon scalar products
(IIR and FIR filters) with small and medium vector
length (<100). The number of required operations
is order of (frame length * filter order).

- The number of operations in every section is
strongly dependent on the various algorithm para-
meters (frame length, filter order, codebook
size).

read Input frame

windowing and
autocorreiation

W

calculation and VQ
of A(z) parameters

N

filtering wlith long - term analysls
AZYAZ ¥} quantization of P(z)
¥ v

subtract contribution

of fiiter memories

precalculations
for VQ of innovatlon

selection of best
Innovation signal

M F!
synthesis of
output frame

y

adaptive
postfilter

A

write output frame

Fig. 3: Data flow of typical CELP algorithms

- In particular three sections may need together
more than 90% of the total operations, depending
on the parameters (especially the codebook size)
and algorithm simplification.

- These critical sections can be considered as
modified vector quantization algorithms, i.e. cal-
culating the distance measure for a certain number
of possibilities by using scalar products and
searching for an extremum. The different possibi-
lities are totally independent from each other.

- The different sections cannot be executed
simultaneously because of iIntermediate result
dependencies,

PARALLEL ARCHITECTURES

According to Flynn's well-known <classification
scheme [10], there exist two different principles of
parallel architectures: single-instruction-multiple-
data (SIMD) and multiple-instruction-multiple-data
(MIMD). A detailed description of computer
architectures and their classification can be found
in [11].

SIMD architectures:; SIMD machines exploit paralle-
lism of data structures, i.e. they are designed for
vector or matrix operations. Parallel execution can
be performed in two ways: simultaneous on different
units or interleaved in pipelined units. Array
processors consist of a number of identical arithme-
tic-logical wunits (often referred to as processing
elements), which work completely in parallel under
control of a single instruction sequencer. Data
exchange between different processing elements is
performed via a mnetwork and dedicated nearest-
neighbour data paths. The hardware amount
(especially for the network) is high, and pro-
gramming has to be well adapted to the system
architecture. Therefore these pure array processors
(e.g. ILLIAC IV, Connection machine) have not been
very successful. On the other hand, pipelined vector
processors (Cray-1, Cyber 205) are used in many
applications where large vectors occur. Pipelined
vector processors typically consist of two different
functional wunits: an extensively pipelined vector
processing unit (VPU) operating on a vector register
file, and a scalar processing unit (SPU) with a
scalar register set. The throughput of the VPU is
about 10 to 20 times higher than that of the SPU,
but can only be achieved for wvery large vector
dimensions (>100). Besides the computers with a
great number of pipeline stages, that are often
referred to as "supercomputers", there exist several
computers with few pipeline stages but micropro-
grammed vector support that are called *"attached
array processors". Their maximum throughput is
significantly lower in comparison to supercomputers,
but 1is fully achieved even for low vector dimen-
sions, so that the averaged system performance/cost
ratio is much better. The architecture is similar to
that of present DSP single-chip solutions, i.e. it
consists of independent subunits for concurrent
multiplication, addition, address calculation, and
several data transfers,

The instruction sets of vector processors and array
processors contain operations like:

dest ;= sourcel op source2

where dest, sourcel and sourcel2 are vectors of the
same length, and op is an element-wise operation.
The vector dimensions used in CELP algorithms are
typically small (e.g. filter coefficients) and
medium (e.g. codebook vectors), and unfortunately
the calculation of scalar products can only be
parallelized by rearranging the accumulation into an
operation tree that is not very efficient for vector
computers. For these operations, the system speed is
comparable to the scalar operation speed, which is
not higher than that of a standard single-chip
signal processor. But for the three critical
sections, in particular for the excitation vector
search, the vectorization can be rearranged by
regarding the codebook as a matrix with every
innovation sequence being a row vector. The calcula-
tion of the distance measure is now performed
sequential for every vector, but in parallel for the
entire codebook. For example, instead of calculating
scalar products in the following way:

for 1 :=1 to N
begin
ai = 0.0
for j ;=1 to M
ay = a; + bi*cij
end

it is better to interchange the loops:

for i :=1 to N
a; := 0.0
for j :=1 toM
for i := 1 to N
ai = ai + bi*cij

or, in a vectorized notation:
a := 0.0

for ji=1¢toN
a8 1= a + b*c

2 brey
These optimizations may be performed by a so-
phisticated compiler [12], but it is better not to

rely on this possibility.

A further speed-up may be achieved by replacing the
IIR-filter 1/A(z/v) with the FIR-filter composed of
its impulse response. FIR-filtering can be paralle-
lized very well, whereas IIR-filtering requires the
evaluation of the output vector element y[i] for the
computation of y[i+l] so that this cannot be calcu-
lated simultaneously.

MIMD architectures: MIMD machines exploit the paral-
lelism of instructions, which may be given either by
data structure (e.g. vector operations) or program
structure (concurrent processes). Task scheduling
can be performed explicitly at compile time or by an
operating system on multiprocessor systems or impli-
citly on dataflow approaches. The latter seem to be
not well suited for complex algorithms with wvarying
parameters, hence they will not be discussed in this
contribution. Multiprocessor systems consist of a
set of complete processors including CPU and 1local
memory. Data exchange between different nodes is
performed via common variables or message passing.
The parallelism of vector quantization makes it
possible to divide the codebook into parts of equal
size, according to the number of processors. No
interprocessor communication is needed except for
initial data and results, which in total is low in
comparison to the number of operations. Thus the
architecture of the network is of mnearly no
influence to the overall system performance for CELP
algorithms. However, the throughput of general-
purpose CPU’s (like the transputers) typically is at
least 10 times smaller than that of single-chip
signal processors. So it is more efficient to use a
small number of DSP chips than a large number of
other processors. The number of processors that can
operate in parallel is limited by the codebook size,
and overall system speedup is limited by the sequen-
tiality of some parts of the CELP algorithm. If we
assume a vratio of 1:N of strong sequential to
potential parallel operations, a number of N+1
processors provides a solution of the highest effi-
ciency with respect to processor utilization.

MIMD/SIMD machines are multiprocessor systems con-
sisting of several SIMD units (e.g. Cray-2). The
maximum speedup to a single wunit will mnot be
achieved for CELP because of the sequential sections
of the algorithm. Hence, if the vector processing
throughput is about 10 times faster than the scalar
performance, the computing time for the total CELP
algorithm cannot be significantly reduced by the use

f of a MIMD/SIMD machine.

540

CONCLUSION

CELP algorithms are used in a wide-spread area of
variations. Future developments will result in fur-
ther modifications. The computational load for
sequential as well as parallel sections is propor-
tional to some algorithm parameters which are typi-
cally expressed as powers of 2. Thus it 1is nmnot
possible to estimate exactly the required system
performance to implement CELP algorithms in real-
time. However, if carefully programmed, CELP can be
parallelized for efficient implementation on SIMD
vector processors as well as MIMD multiprocessor
systems. A MIMD architecture consisting of single-
chip DSP nodes in a master/slave configuration (i.e.
a star-like structure) offers a suitable low-cost
solution with an effective performance comparable to
that of supercomputers.

This work has been done under grant of Deutsche
Forschungsgemeinschaft, Bonn-Bad Godesberg (FRG).

REFERENCES
[1] J. Makhoul, "Linear prediction: A - tutorial
review," Proc. IEEE, wol. 63, pp. 561-580,

CApril 1975.

[2] J.D. Markel and A.H. Gray, Jr., Linear Pre-
diction of Speech, Springer Verlag, New York
1976.

[3] M.R. Schroeder and B.S. Atal, "Code-Excited
Linear Prediction (CELP): High quality at very
low bit rates," Proc. ICASSP, pp. 937-940,

Tampa 1985.
[4] D. Lin, "New Approaches to Stochastic Coding of
Speech Sources at Very Low Bit Rates", Proc.

EUSIPCO, pp. 445-447, Den Haag 1986.

[5] I.M. Trancoso and B.S. Atal, "Efficient Proce-
dures for Finding the Optimum Innovation in
Stochastic Coders", Proc. ICASSP, pp. 2375-
2378, Tokyo 1986.

[6] G. Davidson and A. Gersho, "Multiple-stage Vec-
tor Excitation Coding of Speech Waveforms",
Proc. ICASSP, pp. 163-166, New York 1988,

[7] L.A. Hernéndez-Gémez, F.J. Casajis-Quirés, A.R.
Figueiras-Vidal, and R. Garcia-Gémez, "On the
Behaviour of Reduced Complexity Code-excited
Linear Prediction (CELP)", Proc. ICASSP, pp.
469-472, Tokyo 1986,

[8] P. Kroon and B.S. Atal, "Strategies for Improv-
ing the Performance of CELP Coders at Low Bit
Rates”, Proc. ICASSP, pp. 151-154, New York
1988.

[9] M. Schultheiss and A. Lacroix, "On the Perfor-
mance of CELP Algorithms for Low Rate Speech
Coding", Proc. ICASSP, Glasgow 1989 (to be
published).

[10] M.J. Flynn, "Some Computer Organizations and
Their Effectiveness", IEEE Trans. Comput., Vol,
C-21, No. 9, pp. 948-960, 1972.

(11} K. Hwang and F.A. Briggs, Computer Architecture
and Parallel Processing, McGraw-Hill 1984.

[12] S. Fernbach (ed.), Supercomputers, North-Hol-
land 1986.

