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RESUME

Dans cet article nous abordons la détection d’un signal certain dans un bruit avec une enveloppe répartie
selon la loi Kappa et 'évaluation de ses performances. La modélisation du bruit comme un processus aléatoire
sphériquement invariant conduit au calcul du rapport de vraisemblance et, par conséquence, & la synthése du
détecteur optimal. Nous montrons que le détecteur optimal doit calculer la norm du vecteur des obsérvations
et la distance entre le méme vecteur et celui du signal; apreés il doit élaborer ces deux quantités avec un
dispositif non linéaire et non inertiel et enfin comparer la differénce avec un seuil. Les performances du
détecteur optimal ont eté obtenus par simulation: nous les avons aussi comparées avec les performances du
détecteur linéaire. Nous avons aussi étudié Pinfluence de la corrélation du bruit et de la fréquence doppler
du signal sur les performances. La comparaison entre les deux détecteurs présentés montre que le systeme
optimal est superieur surtout lorsque le signal est faible.

SUMMARY

This paper deals with the synthesis of the optimum receiver for known signal in the presence of K-
distributed disturbance, and with the assessment of its performance. Modelling the background noise as a
Spherically Invariant Random Process yields closed form expressions for the joint pdf’s of any order, thus
enabling a Neyman—Pearson design of optimum detector. We show that the optimum detection amounts to
processing, via a zero-memory non-linearity, the distances of the received vector both from the origin and
from a stored replica of the useful signal and to comparing the difference to a threshold. The optimum
detector’s performance assessment of the optimum detector is evaluated via computer simulations: for sake
of comparison, the performance the conventional receiver under the same disturbance is also considered. An
analysis of the optimum receiver operating characteristics shows that a marked improvement is achievable
over the conventional receiver, at least in the region of low and moderately high detection probabilities. In
particular, the larger the deviation from Gaussian distribution, the better the detectability of weak signals.
The effect of the clutter correlation properties has also been investigated, as well as the influence of non-zero
doppler shift of the target echo.

1 Introduction

The theory of optimum detection of targets embedded in clut-
ter is well established if the baseband equivalent of the clut-
ter can be modelled as a complex Gaussian process, namely
with Rayleigh amplitude and uniform phase [1]. However, in
some situations of practical interest, such as high-resolution
and/or low grazing operating radars, the Gaussian assump-
tion becomes inconsistent with real data, as the experimental
clutter amplitude distribution exhibits far higher tails than
predicted by Rayleigh distributions.

To model this non-Gaussian clutter involves at least fitting
experimental data to theoretical amplitude probability density

functions (pdf) and matching the measured spectral proper-
ties to suitable covariance matrices or equivalent second-order
characteristics. This level of specification, however, although
sufficient for the analysis of some incoherent processors, is still
inadequate for the analysis of coherent cancellation techniques
and, even more so, for the design of optimum or ad hoc pro-
cessors. These tasks require a “coherent” process specifica-
tion, namely providing joint probability distributions for the
in phase and the quadrature clutter components.

Recently some coherent models have been proposed, com-
patible with the most common non-Rayleigh envelope distri-
butions, namely the lognormal [2,3] the Weibull [4,5], and the
K-distribution [6].
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In the present paper we focus on the K-model, as such a
distribution satisfies the constraint requested for the envelope
of a complex Spherically Invariant Random Process (SIRP)
and leads to a clutter model that is consistent with the well-
assessed composite surface scattering theory [7].

Previous work on K-distributed clutter was confined to the
analysis of conventional radar processors, namely the optimum
ones in Gaussian clutter [8,9]. Here we consider the design and
the analysis of the optimum detector for known signal in the
presence of K-distributed clutter.

The paper is organized as follows. Section 2 reviews the
problem of modelling a process with pre-assigned envelope pdf
and arbitrarily given correlation functions as a complex SIRP.
Section 3 describes the synthesis of the optimum receiver for
a known signal in K-distributed clutter. The evaluation of
optimum receiver performance and its comparison to the con-
ventional receiver, that is the optimum one as long as noise is
Gaussian, are presented in Section 4. Concluding remarks and
some hints for future research are in Section 5.

2 Clutter modelling

To design the optimum detector of a target in clutter requires
modelling the disturbance as a complex random process. Two
different approaches can be followed.

The first approach, developped in [2,4], is a generalization
of the Wiener generation scheme of real processes with pre-
assigned first-order pdf and covariance function. As outlined
in Fig. 1, it amounts to processing the envelope of a complex
correlated Gaussian sequence through a zero memory non lin-
earity (ZMNL), leaving unchanged the phase process. The
ZMNL converts the Rayleigh input pdf into the desired non-
Rayleigh distribution. The correlation properties of the out-
put process can be controlled by a suitable linear filtering of
the input white Gaussian sequence provided that an analytical
relationship between the covariance functions of the desired
sequence z(k) and the Gaussian sequence yg (k) can be estab-
lished. This approach turns out to be hopelessly complex if
the output envelope is to have the K-distribution:

falr) = % ((—f;)”“r" - (%) rzo (1)

where T'(-) is the Eulerian function, K, (-) is the modified sec-
ond kind Bessel function of order v and ¢? is the common
power of the quadrature components. Indeed a closed-form ex-
pression for the ZMNL does not exist for this case, and hence
the said relationship in terms of covariance functions cannot be
found. In the second approach, proposed in [10], 2 complex
Gaussian process yg(k) is modulated by an highly correlated
exogenous process s(k) as shown in Fig.2. This achieves the
desired envelope pdf, while not appreciably affecting the cor-
relation properties of yg(k). This allows for an independent
adjustment of the correlation properties, by linearly filtering
the complex white Gaussian signal wg(k), and of the desired
envelope distribution, by selecting a suitable pdf of the the
modulating process. If the exogenous process is approximately
constant in the observation time the resulting process z(k) is
a SIRP [6](Fig.3). This approach models either stationary or
non-stationary processes, according to whether the linear filter
is time invariant or not.

One appealing feature of this approach is its physical in-
terpretation in the light of the composite surface scattering
theory (7). With reference to sea clutter, this theory assumes
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Figure 1: Model for a complex non-Gaussian correlated se-
quence.
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Figure 2: Exogenous model for a complex non-Gaussian cor-
related sequence.
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Figure 3: SIRP model for a complex non-Gaussian correlated
sequence.

that a slightly rough surface, corresponding to the Gaussian
component yg (k) sequence of Fig.3, is superimposed upon a
larger swell structure, corresponding to the process s(k). Such
physical interpretation is confirmed by experimental results in
the case of K-distributed clutter [8,11].

Not all envelope pdf’s can be assumed as the amplitude
distribution of a complex SIRP since, as suggested by the rep-
resentation of Fig.3, the envelope of a SIRP is the product of a
Raileigh variable times an independent non-negative random
variate. The envelope pdf (1) fulfills such a constraint and
hence can be assumed as the envelope distribution of a SIRP
[6]. Modelling the K-distributed clutter as a SIRP, allows a
complete specification of the process. The joint pdf of the N

complex noise samples n is [6]:
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where M is the covariance matrix of the zero-mean noise sam-
ples, and

fa(x)

% llpg= ("M 'x)% (3)
is the norm of the vector x induced by the inverse covariance

matrix. In the presence of uncorrelated, unit variance obser-
vations, this norm reduces to the usual Euclidean norm.

3 Optimum detection of a known sig-
nal in K-distributed noise

The problem of detecting a known signal embedded in additive
disturbance can be stated in terms of the following hypotheses

test:
HO :
{ HI : (4)

where vectors r, 8, n are composed of samples from the re-
ceived signal, the target signal and the disturbance respecively.

The Neyman-Pearson receiver, namely the one which max-
imizes the detection probability (P4) for a given false~alarm-
probability (Py,), amounts to comparing the log-likelihood ra-

tio,
fa(r—s)

=g [ .

to a threshold, to be set according to the required false-alarm
rate.

Substituting the joint pdf {2) into (5) the Neyman-Pearson
test reduces to:

r=n
r=s4n
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Figure 4: Optimum coherent detector in K-distributed clutter.

where:
(7)

As outlined in the block diagram of Fig.4, the optimum proces-
sor computes first the distances of the received vector r from
the origin {no useful signal present) and from a stored replica of
the target echo s, respectively. Then such distances are warped
through the Zero-Memory-Non-Linearity (7) and, finally, the
difference between the warped distances is compared to the
detection threshold T'.

This receiver can be considered as a generalization of the
optimum receiver for correlated Gaussian clutter to which it
is equivalent as the v parameter increases to infinity. In fact,
letting ¥ — +oo, the input noise distribution tends to the
Gaussian one [6| and the ZMNL g, (z, N), suitably normalized,
approaches a square law:

gv(z, N) = log{z* "N K,_n(V2vz)}
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An alternative realization of the optimum receiver relies on
whitening the input noise. The resulting receiver structure
is basically the same as in Fig.4, using the Euclidean norm
instead of the norm induced by M and replacing s and r with

their filtered versions:
s' = As 9)

where A is the matrix of the whitening transformation. From
an operational point of view the computational complexity of
the two receivers is essentially the same. However the whiten-
ing approach is preferable in carrying on the performance anal-
ysis via computer simulation, since a single set of white K-
distributed vectors can be generated to serve as patterns for
both cases of uncorrelated and correlated noise.

r' = Ar

4 Performance assessment

The present section is devoted to a comparative analysis of the
optimum and the conventional receiver, when both operating
in K-distributed noise. Since the statistical characterization
of the test variable of the optimum processor turns out to be
hopelessly complex, the assessment of the receiver performance
requires simulation techniques. Standard Montecarlo counting
has been used in estimating detection probabilities, whereas an
extrapolative method based on generalized extreme value the-
ory has been adopted for estimating false-alarm probabilities
so as to avoid generating and processing an enormous num-
ber of observations [12]. Moreover a suitable interpolation has
been performed on data provided by simulation, in order to
improve the readability of the results.

On the other hand, integral expressions for Py and Py, of
the conventional detector can be obtained. The conventional
detector performs the following binary hypothesis test:

H,
sTM™1r z T
Hy

Since the received vector r is the product of a Gaussian vector
times a random modulating variate (see Fig.3a), the LHS of
the previous equation turns out to be itself the product of the
same modulating variate times a Gaussian variable and hence

(10)

is a a SIRV of size one {closure property of SIRP’s under linear
transformations [6]). Therefore, Py, and Py are easily found
by averaging the corresponding probabilities in the Gaussian
case over the modulating variate distribution s referred to in
{6].
The Receiver Operating Characteristics (ROC’s), namely
plots of P; versus the average signal-to-noise (SNR) ratio, are
shown in Figures 5, 6 and 7 for several values of the shape
parameter v of the noise distribution, for Py, = 107¢ and for

N = 8 integrated pulses.
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Figure 5: Optimum and conventional receiver performances in
uncorrelated K-clutter
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Figure 6: Optimum detector performance in correlated
K-clutter
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In Fig.5 plots of P; versus SNR are shown for both the
optimum and the conventional receiver in the presence of un-
correlated noise: the curve labelled as v = oo corresponds to
both receivers, since, in such a limit case, the K-distributed
clutter becomes Gaussian.

Fig.5 shows that clutter spikyness (low values of v) sharp-
ens the “threshold effect” exhibited by the conventional detec-
tor operating in Gaussian environment. In other words, the
detection of weak signals is almost completely inhibited, while
the actual strength of the targets is immaterial, when the re-
ceiver operates above a certain value of the SNR (threshold
SNR). The threshold SNR raises as v decreases, thus resulting
in a remarkable detection loss: for example, in passing from
v = oo to v = 0.1, the detection loss is about 13 dB (see Fig.5).

The optimum receiver largely outperforms the conventional
one, the amount of such an improvement depending on clutter
spikyness and SNR. More precisely, for low values of v, the
optimum receiver outperforms the conventional one over the
whole range of P;’s, while, as v increases, an appreciable im-
provement is gained only for weak signals. The value of v is
also relevant to the optimum performance in that the threshold
effect becomes less marked as v decreases, and in particular it
is always less marked than that corresponding to v = oo.

If the assumption of uncorrelated clutter no longer holds,
the performance of both the optimum and the conventional
receiver changes, depending on the clutter bandwidth as well
as on the target doppler shift f;. To account for such factors
we provide in Figs. 6 and 7 two sets of curves describing the
performances of the optimum and of the conventional receivers
in the presence of exponentially correlated noise. The extreme
cases of fy = 0 and f; = PRF/2 (half the Pulse Repetition
Frequency) are considered, corresponding to the minimum and
the maximum spectral separation between the target and the
clutter. From Figs.6 and 7, it is seen that, for high one-lag
correlation coefficient of the noise values, the overall shape of
the ROC’s is practically the same as in the uncorrelated noise
both for optimum and for conventional detector and therefore
the above comments apply also to the case of correlated noise.
Yet, the ROC’s shift toward lower or higher signal-to-noise
ratios according to the value of the target doppler frequency.
Indeed, due to the high correlation, the power of the clutter
tends to concentrate in the low-frequencies region, thus mask-
ing zero-doppler signals. Conversely, if the signal possesses a
nonzero doppler frequency, then such a masking effect reduces,
as a consequence of increased separation between the spectra
of the clutter and of the signal.

5 Conclusions

In this paper, we face the synthesis of the optimum receiver
for a known signal embedded in K-distributed noise and the
assessment of its performance. The structure of the optimum
detector can be reduced to conventional one, but for the pres-
ence of a zero-memory non linear processor.

The computed ROC’s show a marked improvement over the
conventional detector, both in the case of white noise and in the
case of correlated noise, especially for highly spiky clutter and
low signal-to-noise ratios, the actual gain decreasing noticeably
as the probability of detection approaches unity and/or the
shape parameter grows up.

A possible drawback of the proposed scheme is that its
optimality relies on two assumptions:

o at the design stage, an estimate of v is available, in order
to determine the optimum ZMNL;

o at the operational stage, the current SNR value is given,
in order to set the detection threshold.

To remove these drawbacks calls for further investigations,
aiming to the synthesis of robust sub-optimum receivers in
the general case of incomplete statistical description of clutter
and/or target.
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