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RESUME

Le décodage a Maximum de Vraisemblance (MV) est une technique trés largement utiliseée dans le cadre des
codes correcteurs d’'erreurs, des modulations codées et des codes & réponse partielle par exemple. Les erreurs a
la sortie d‘un tel décodeur sont corrélées et ne peuvent pas étre représentées par un modéle Binaire Symétrigue.
Cet article est consacré a la définition et & la présentation d’'une modélisation analytique de telles erreurs. La
méthode proposée est basée sur la connaissance du processus de création des erreurs lors d’'un décodage a MV. Ce
modéle peut étre utilisé pour 1’'étude et la conception de “super-code”, par exemple des codes concaténés ou des
codes en cascades. De plus, 1l peut étre servi de modéle générateur.

SUMMARY

Maximum Likelihood (ML) decoding has been used in many cases, such as classical error control techniques,
coded modulation techniques and partial response encoding technigues. The errors issued from this decoding occur
in bursts and cannot be represented by the classical Binary-Symmetric-Channel. This article is dedicated to
introducing an analytical method for modeling such errors. A Markov Model is used and is based on the ML decoding
error producing mechanism. This model can be used to design and study “super coding” techniques such as concate-
nated or cascaded codes and it can also be used to regenerate a similar error seguence without actually encoding
and decoding the signal, and this can save a lot of simulation time.

INTRODUCTION for the most probable path, the decoder occasionaly
chooses a wrong path and makes errors. This wrong
To improve the quality of a digital 1link, path which remerges to the correct path after £ steps
or to adapt the transmitted spectrum to the channel contains several errors. This effect of producing
characteristics, several techniques involving coding errors is such that errors occur in burst separated
have been studied. As an example, coding can be used by fairly long error free gaps. This biased behavior
to improve power efficiency. The redundancy intro- of the decoder which is either “too good" or "too
duced can then be transmitted by increasing the data bad" exhibits the presence of a memory effect. The
rate(this is the classical error protection approach) system cannot therefore be represented by the
or by increasing the size of alphabet. This last classical Binary Symmetric Channel (BSC) model.
technique introduced by Ungerboeck gives rise to the
so called coded modulations [1]. Coding can also be Yet the modeling of errors at the output
used to shape the transmitted signal spectra. This of a ML decoder is a very useful tool. For example,
can be done by correlative level encoding techniques. it allows the design and study of certain “super
coding" techniques such as concatenated or cascaded
In the case of additive white gaussian codes which take advantage of the presence of memory
noise (AWGN), the optimum decoder performs the (in information theory parlance, for a given bit
maximum likelihood (ML) estimation of the transmitted error rate, memory increases capacity). And a model
sequence. This decoding process can be viewed as the ican also be used to regenerate a similar error
|search of the “most 1likely*" path in the trellis sequence whithout actually encoding and decoding the

representing the encoding process [3]. In searching signal (this can save a lot of simulation time).




272

Classical methods of modeling “channels
with memory" can be used to represent the errors at
the output of a ML decoder. They are often based on a
Markov chain consisting of a finite number of states
with defined transition probabilities [4-5]. To
construct these models accuratly requires the prior
knowledge of the error distribution. However this
information is not always available and computer
simulations in order to establish it often require an
excessive amount of CPU time.

Thus, the motivation to find a new method
of modeling the errors issued from the ML decoder
without the Kknowledge of error distribution before-
hand. In section II, after a brief presentation of
classical methods of modeling, we describe a Markov
model based on the Viterbi decoder error producing
mechanism. An important advantage of the proposed
model 1s that it can be determined using the so
called "Transfer Function" technique (section III).
To 1illustrate this new method of modeling, two
examples of coded 16 PSK modulation are given in
section IV. The performance of this method is also
discussed in this last section.

DESCRIPTION OF MODELING

As it has been said previously, errors at
the output of a Viterbi decoder occur in bursts.
Classical methods used for "bursty channels" can thus
represent this memory effect. This approach is
reviewed in the following section.

1. Classical approach of modeling channels with
memory

"Bursty channels" are often modeled by a
Markov chain consisting of a finite number of
states with transition probabilities. The set of
states are split into two subsets corresponding to
the presence or the absence of errors. Various
statistics about error sequences can be computed
by means of these models, and they can also be
used to generate error sequences with the same
statistical properties. In this «case, state
sequences are mapped into error sequences, taking
into account the states partitioning into two
subsets. Note that if the two subsets include more
than one state, the inverse mapping (from the
error Sequence to the state sequence) is in
general not possible.

A very simple and popular model is the so
called Fritchman Simplified Partitioned Markov
binary model [4-5], The states are partitioned
into (N-1) error free states and a single error
state. No transition is allowed between error free
states. To define the transition probabilities of
this model, the knowledge of the Error-Gap-
Distribution* (EGD) is required. This distribution
is obtained experimentally or by computer
simulation. It is then expressed as the sum of
(N-1) exponentials using curve fitting techniques.
This last expression gives directly the transition
probabilities of the model [5].

Although this approach has the advantage
of being very general, its main disadvantage is
that it requires a huge amount of data in order to
obtain the EGD. Experimental data are often
unavailable, and computer simulations require an
excessive amount of CPU time, especially for low
bit error rates (BER). To overcome this difficulty
we introduce in the following a new approach to
modeling which can be determined analytically.

* The EGD is defined by P(0M/1) = Probability that
at least m successives error free bits ("0") will be
encountered next, given that an error ("1"} has just
occured.

2. A_new _approach to modeling

The model described here is a Markov model
with two error free states (good states) and a
single error state (bad state). These three states
correspond to the Viterbi error producing
mechanism. As has been said previously, the
Viterbi algorithm searches the trellis for the
path which is the “most 1likely". The decoder
occasionaly chooses a wrong path. This is an error
event, but all the digits corresponding to a wrong
path are not necessary wrong. Thus the first state
(S4) represents the digits belonging to the
correct path (of course 1t 1is an error free
state). The two remaining states are devoted to
the error events. The first one (S)) corresponds
to the correct digits of the wrong path {error
free state) and the last one (S3) represents the
erroneous digits of the wrong path (error state}.
This model is illustrated in the following

diagram.
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In the above diagram, all the transitions
between states are allowed. But very often, some
transitions can be eliminated. For example, the
structure of trellis can be such that the first
bit of each wrong path is wrong (in this case
Pi» = 0), or that the last bit of each wrong path
is correct (then P3q = 0).

As with the classical model, this new
model can be used to compute various statistics
about error segquences, or to generate the error
sequences themselves (note that the knowlege of
the encoder allows the mapping of an error
sequence 1nto a state sequence, which was not
possible with <classical models), The main
advantage of this model is that it can be

- determined analytically. This is the subject of
the following section.

ANALYTICAL DERIVATION OF THE MODEL'S P TERS

The analytical derivation of the model
transition probabilities is based on the “Transfer
function" of the code. This function describes in a
compact form all the possibilities of choosing a
wrong path instead of a correct path [3]. It can be
derived from the state diagram of the encoder.

Since in general the distance {(and thus
the probability) between an incorrect path and a
correct path depends on the correct path, two methods
have been developed +to compute this transfer
function. The first one is based on a product state
diagram [6}. In this case, the product state

.corresponds to pairs of encoder states. This method

is general, but its complexity grows with N4, where N
is the number of code states. To reduce this
complexity a second method was proposed in [2]. This
method is less general than the first one, but its
complexity is proportional to N.

In all cases, a state diagram is defined,
and each branch is labeled with two factors : the
first one is the probability P(xg, yyx) of this
transition occuring and depends on the distance
between the correct (xx) and wrong (yg) received
symbols. The second one G(xy, yyx) depends on the
particular information we want to get, and will be
described later.

The transfer function averages over all
possible correct and incorrect paths, the factor

'kgo P(xg, ¥x) G(xx, ¥x)




T(P,G) = ZIT p (Xk,¥k) G(Xyk.¥g)

XYk
where :
¥ = ...Xx, Xk41.... 15 the correct transmitted path
Y= ...¥k: Yg4ir--- is the wrong received path
2
. O Jfxg - vy
P(Xg,Yg) = — €XP ( ————75&5-———) in a AWGN case.

The computation of the transition probabi-
lities of the model requires the knowledge of several
terms : the error event probability PE, the average
length of an error event L, the bit error probability
after decoding Pb, the average number of pattern
(a,b) (a,b € 0,1) during an error event N(a,b), and
the probability that the first digit of an error
event will be in error PFq. All these terms can be
computed with the transfer function technique and the
appropriate G(xy,yy)

- The_error event probability PE : the computation
method of this parameter is very well known [2-3].
The error event is taken into account by setting
G(xg, yx) = 1, if the two paths diverge, otherwise
G(xg, yx) = 0. Then PE = T(P, 1).

- The bit error probability Pb : this is also a
classical computation [2-3). The number of wrong
bits during an error event is determined using
G(Xk, yYx) = IV, where n is the number of digits
which differ between the two decoded error symbols
corresponding to Xy and yyg. Since the useful
information is the exponent of the variable I
(which is itself a “"dumb variable"), the bit error
probability has to be derived :

Pb = —§%7§%Lll |1 =1 for a (m, n) code.

- The average length of an error event L : in this
case G(xyx, sg) = IM, where m is the number of
information bits concerning each transition, and

= ST (p.1 =
R s el R

~ PF1 : this probability can be computed easily as
previously mentioned. The transitions in the state
diagram corresponding to the beginning of an error
event have to be marked with G(xy. yx) = I, if the
first digit is wrong, otherwise G(xx, vyx) = 10 (let
us recall that this probability can often be
defined without any computation, depending on the
trellis structure).

- Average number of the error pattern N (a,b) : each
transition in the state diagram corresponds to a
decoded error symbol of m digits. It is very easy
to count the number of the pair (a,b) (a,b € 0,1)
inside an error symbol of m digits. But the transi-
tion between the previous and current error symbols
has to be taken into account. This problem can be
solved if the state diagram is labeled by a
2x2 matrix instead of scalars (G (xy, Yk) as
previously). Indeed let us define R as the set of
all possible error symbols.  can be split into two
subsets g and 4y, where & (resp. flg) is the set
of error symbols ending with an erroneous digits
(resp.correct digits). Each transition of the state
diagram is labeled by :

M 9 (P,I) MR Qq (P,I)
M(P,I) =
MQ S (P,I) MR 8 (PI)

Each term M @ 4(P, I) corresponds to the case
where the current error symbol belongs to Qj and
the previous error symbol belongs to ;.

M Q; Q4 (P, I) has the following form : P(xy, ¥x)
I, (G(xg, yx) = IP), where n is the number of the
pair (a,b) in the current error symbol, possibly
plus one if the pair (a,b) occurs in the
transition between error symbols.

[

The transfer function of the state diagram is then
a 2 x 2 matrix :

Mgy R (P,I) TRo&y (P,I)
T(P,I) =
T Q) Qo (P, I) TRy Qq (P,

And the average number of error pattern (a, b) is
given by :

_;_6_[2 o
N(a,b) = - = ijrnl op (P,I)]

To illustrate the computation of this last term,
let's take an example. We are interested in
computing the average number of the pair (1,1) in

I=1

an error event : N(1,1). To this end, each
transition of the state diagram is labeled by M,
where :

MQ Q5 =P (xg, yg) I" 3 1 =0,1, 3 =0,1
9 = {error symbols ending with "0}

Ql {error symbols ending with "1"}

Error symbols<=>symbols € Error event.

Where :

- P (Xg, Yg) 1s the probability of receiving yy
instead of xy

- n is the number of pair (1,1) encountered in the
current error symbol (e 7 ox QO), plus one if
the previous symbol € Q¢ and the first digit of
the current symbol 1is “1". If we have the
following transition (between error symbols) in
the state dlagram :

., 101, 110,

previous symbol current symbol

‘7

where 101 € Q4q, 110 € Qp, then n = 2.

And N(1,1) can be computed as described above by
taking the derivation of the transfer function
with respect of I.

Now the computation of the model transition
probabilities can be carried out very easily.

Derivation of the model parameters

Transitions emanating from state S1

P12 (respect. P43) 1is the error event
probability knowing that the first digit is an error
free (resp erroneous) digit. They are given by
(PE<<1)

PE
Pqo = . (1 - PFq), Py3 = —Eﬁ‘ PFq
. ’ 3
Taking into account, the fact that z Pij =1,
i=1,2,3, Pyq is defined by : =1
PE
Pip=1-—

Transitions emanating from state S2

Py, represents the probability of a wrong
path having an error free bit after an error free
bit. It is the ratio between the average number of
error pattern N(0,0) and the average number of error
free digits N(0) along a wrong path :

| _N(0,0)  _ _N(0,0)
Py2 =P (0/0) = Ty ~ , _ mEb
PE

In the same manner, we can write :

N(O.1) _ _N(O,1) PE
N(0) L - m_Pb
PE

Pp3 = P(1/0) =

then Ppq1 = 1 - P23 - P22.



Transitions emanating from state 53

As described previously

_ _ N(1,0) _ _N(1,0) PE
P3p = P(O/1) = N(1) R
then

_ _N(1, 1) _N(1.1) PE
P33 = PL1/1) = T m Pb

P3q = 1 - P32 - P33.

EXAMPLES

In this section, the technique described
above is applied to two "coded modulation" schemes.
These are classicaly coded 16 PSK with two and four
states convolutional codes. The transmission chain
under study 1s shown in figure 1, and the two convo-
lutional codes of rate (3/4) are presented in fig. 2.

As it has been seen before, the transfer
function technique can be used to compute various
statistics about error pairs along an erroneous path.
The state diagram has to be labeled by matrices
instead ot scalars. To illustrate this point, fig. 3
presents P(1/1) (resp. P(1/0)), the probability of
having an error knowing that the previous bit was
wrong (resp. was correct) along a wrong path, as a
function of the bit error rate. Results obtained by
computer simulation (denoted by SIMUL) can be
compared to the graph generated by the analytical
estimation described here (denoted by ANALYT). It can
be seen that there is a very good agrement between
these two graphs.

In order to 1illustrate the accuracy of
this new method of modeling, the error gap distri-
bution (EGD) is presented in figure 4. For each code,
four curves are given the first one (SIMUL)
represents the EGD obtained by computer simulation
and can be viewed as the reference curve. The second
one (FRITCH) 1s the EGD obtained with a classical
Fritchman simplified partitioned Markov model (of
course, this model was derived from the simulated EGD
by a curve fitting method). The third curve (ANALYT)
gives the results from the analytically derived
model, the last curve presents the EGD given by a
Binary Symmetric Channel (BSC). The difference
between this last curve and the others reflects the
presence of memory in the system. It can then be
noted that the memory effect is stronger in the case
of a 4 state encoder than in the case of a 2 state

CONCLUSION

This new method of modeling the errors
issued from Viterbi decoder is based on the "Transfer
Function" technique. By mean of this technique, many
statistics can be derived which permit the parameters
of the model to be determined, such as the corre-
lation between two consecutive digits. In this case
the labeling of the state diagram of the code will be
in the form of a 2x2 matrix instead of a scalar.

This modeling method performs as well as
the classical method of modeling a channel where the
errors occur in bursts. The main advantages of this
model are its simplicity (only three states are
needed) and the analytical derivation of its para-
meters. Its complexity 1s proportional to the
complexity of deriving the transfer function.

This model can be wutilized to design
“super Codec" for error control, where the inner
decoder will be a Viterbi decoder, and of course to
regenerate error sequences for test runs.
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encoder. These results also show that the analytical
model is as accurate as the Fritchman model. Of
course, the main advantage of this analytical
approach is its low cost in CPU time.
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