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RESUME

Cet article d€trit une methode pour construire une collection de
filtres uniformes et non-uniformes, qui est fondée sur la transformee
de Fourier courante (TFC). La TFC est accomplie en convolRant le
signal avec 1'un des nmembres d'une famille de fonctions fenetres
h(nT) = (nT)*e "7 avec k entier. Les valeurs de k et de a peuvent
€tre choisies pour spécifier respectivement l'ordre et 1la largeug de
bande de chaque filtre d'analyse. La TFC est mellleure que la methode
plus traditionnelle de 1la transformée de Fourler 3 temps discret
(TFD), parce que des intervalles de filtre inf€gales 3 une 1argeur de
bande d'analyse inconstante sont permis et parce qu'on peut contrdlerx
la fuite spectrale en travers des canaux.

En traltant l'operatlon de la TFC comme des filtres bande pass, on a
calcul€ une equatlon de la réponse d'impulsion composee. On peut
employer cette réponse pour rendre optimale la reponse d'amplitude
composé€e de la TFC. On peut construire un groupe de filtres 3
1'1ntervalle et a la largeur de bande non-uniformes, en divisant la
bande de fréquence en un nombre de sect1ons uniformes et en rendant

optimale la reponse d'impulsion composse de chaque section s€parément.
Enfin on a present& une méthode cepstrale modifiée, qui rend lisse un
spectre non- unlforme. On a illustré aussi que cette technique est

meilleure que la méthode de filtre traditionnelle.

SUMMARY

This paper describes a technique for designing uniform and non-uniform
filterbanks based on the Running Fourier Transform (RFT). The RFT is
implemented by convolving the input signal with one of a family of
vindows, h(nT) = (nT)%e~>"", where k and o may be chosen to specify
the order and bandwidth, respectively, of each analysing filter. The
RFT is superior to the more traditional Discrete Pourier Transfornm
(DFT) in that non-uniform channel spacing with variable analysing
bandwidth is permissable and, also, spectral leakage across channels
can be controlled.

By viewing the operation of the RFT filterbank in terms of bandpass
filtering, an expression for the equivalent composite impulse response
has been derived. This response can be used to optimise the composite
amplitude response of the RFT filterbank. Filterbanks with non-
uniform channel spacing and bandwidth can be designed by splitting the
frequency band of interest into a number of uniform sections and then
optimising the equivalent composite impulse response of each section
independently. Finally a modified cepstral smoothing technique for
non-uniform spectra is presented and shown to be superior to
conventional bi-pass filtering.

1. 1Introduction

£00

h(nT) is the impulse response of a lowpass

The Running Fourier Transform [Flanagan, filter and * denotes discrete convolution.
19721 is a method for deriving the spectral By definition, the magnitude spectrunm,
content, F(e,nT), of a gquasi-stationary |F(e,nT|, is given by
signal at any instant in time. For a _
discrete-time signal, it is expressed as |F(w,nT)] = [F(@,nT}.F(@,nT)]*"=
n (3)
F(e,nT ) = £ £(xT).h(nT-rT)e ?v"T L = (a®=(e,nT) + b= (a,nT)]1*/=
= a(«,nT) - jb(e,nT), vhere F(w,nT) denotes the complex conjugate
vhere of F(w,nT). PFig 1 shows a system, using
a(e,nT) = [£(nT).cos{enT)]*h(nT), real operations only, for carrying out the
(2} spectral measurement indicated by eguation
b(e,nT) = [£(nT).sin(enT)]1*h{nT), (1).
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Fig 1 : Implementation of Runnning Fourier
Transform

From a frequency-domain perspective, PFig 1
shows that the input signal is heterodyned
to base-band and then filtered by a lowpass
filter with impulse response h(nT). The
result is effectively a bandpass filter with
centre frequency @ and a passband extending
from (o - ®.) to (@ + w.), where w. is the
radian bandwidth of the lowpass filter. By
carrying out the measurement indicated by
Fig 1 at a number of different analysing
frequencies w., a running spectrum can be
obtained. The advantage of this method of
spectral derivation over, for example, the
Discrete Fourier Transform (DFT) is that
analysing bandwidth and spectral resolution
are independently variable and therefore
spectral leakage across channels can be
controlled.

An appropriate family of lowpass filter
impulse responses, h(nT), for use with the
Running Fourier Transform are defined by
[Owens, 1988]

h(nT) = (nT)}*.e ™"", k integer. k4)
The above family of lowpass functions have
order k+1 and a 3dB radian cut-off frequency
®c: given by

W = (x‘( 21/".!»4:4"13 - l )1/2!. (5)

Using the impulse-invariant transformation,
the z-domain transfer function, H(z), of
this family of filters is
[ b+ L

H(z) = T"[Zan{e ™7z *)"])/[1l+Ebn(e Tz "*)™]. (6}

P M-
A wide variety of filterbank configurations
can therefore be realised by appropriate
choice of &, « and k.

2. Non-Uniform Filterbank Design

A desirable feature in filterbank design is
that the composite frequency response of the
bank should be flat with linear phase. This
is not too difficult to achieve if uniform
channel spacing and constant bandwidth
suffice, However if non-uniform spectral
resolution and definition are required then
the problem of obtaining a flat composite
respnse becomes extremely difficult. This
paper will consider composite amplitude
response only since phase response is often
of secondary importance in spectral
analysis.

The composite amplitude response of the
filterbank can be computed by summing the
response of each channel to a swept-
frequency input signal. This can be
efficiently computed from an expression for
the frequency response of each channel.
Replacing the dummy summation variable r in
equation (1) by n-r gives

o«

F(@,nT) = £ £(nT-rT).h(rT).e"dmcm=r>7T
r=o (7)

= e”J%"T{a,(w,nT) + jb.(w,nT)]

where

a1(«,nT) = £(nT)*h(nT)cos(w,nT)

bi(e,nT) = £(nT)*h(nT)sin(w,nT) 8)
The magnitude spectrum, |F(w,nT)!, is now
given by

IF(a,nT)| = [a.® + b,®]17= (9)

The above equations show that the RFT may be
alternatively viewed as filtering the input
signal with bandpass filters with impulse
responses h(nT)cos(wnT) and h(nT)sin(enT),
squaring and adding the magnitude of each
filter output and then taking the square-
root. By deriving the z-domain transfer
function of each bandpass filter using the
impulse invariant transformation, sguaring
and adding the magnitude responses and
finally taking the square-root, an
expression for the overall amplitude
response of each channel can be derived.

Consider first the case of uniform channel
spacing. As previously indicated, the
filtering action of the system in Fig 1 can
be viewed in terms of bandpass filtering,
though its impulse response is the window
function h(nT). A true bandpass filter
would have an impulse response
h(nT).cos(e.nT). Assuming no channel
centred on dc, the composite impulse
response, p(nT), of an M-channel bank of
bandpass filters is

~i
p(nT) = h(nT).d(nT), d(nT) = £ cos(w.nT) (10)
ke v 1

If the channel spacing is fixed, then the
function d(nT) depends only on the number of
channels M and the channel spacing 8w and
can be expressed in closed form as

d{nT) = [sin(NSwnT/2)1/[sin(éenT/2)1] (11)
For an odd number of channels covering the
double-sided frequency band of interest,
N = 2M + 1 and for an even number, N = 2M.
In general, d(nT) is a sequence of pulses,
of maximum amplitude N, occuring at
intervals of 2n/8w. Such a sequence is
shown in Fig 2 for M = 100, 8w = 40Hz,
f= = 10kHz and a frequency range of dc to
4020 Hz. When the double-sided band of
interest covers the range -n/T to +u/T, then
d(nT) becomes an impulse train of amplitude
N.

250

150 |-

d(nT)
8
T

Time (msec % 10)

Fig 2 ; An Example of the Fupction d(nT)



In the composite impulse response of the
filterbank (Egn. 10), the function d(nT) is
veighted by the impulse response of the
lowpass filter, h(nT). By iteratively
adjusting the channel spacing and bandwidth,
a composite impulse response can be obtained
vhich approaches the ideal, that is a single
delayed impulse. This is illustrated in Fig
3. Note that an RFT filterbank measures the
spectral content of a signal by repeatedly
heterodyning and lowpass filtering, whereas
the composite impulse response shown is for
an equivalent bank of bandpass filters.
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Fig 3 Conceptual Composite Impulse

Response of RFT Filterbank.

It is possible to extend the above method of
design to obtain a deqree of non uniformity
in the channel spacing and bandwidth of the
filterbank. This is achieved by dividing
the frequency band of interest into a number
of sections. Each section must have uniform
resolution and definition but the values of
each can vary from section to section. The
equivalent composite impulse response can be
computed for each section and the design
procedure applied to each in order to
optimise the overall composite frequency
response. .

To ensure that the relative gains of each
section are egual, a scaling factor is
required for each section such that the
amplitude level measured for a unit-
amplitude sinusoid, falling exactly on the
centre frequency of any channel, will always
be unity. This is readily achieved by
ensuring that the gain of each filter is
unity at dc. From equation (6), the scaling
factor S is given by

e d [
S = (1 + £ bue ™™T]/[T-.E ane"="T] (12)
m=3 a1

The a~ coefficients are always positive but
the b. coefficients are negative for m odd.
To ensure that § is neither negative or
zero, it has been shown [Murphy, 1988) that
for lowpass filter orders of 2, 3, 4, 5 and
6, analysing bandwidths less than 1, 11, 44,
90 and 160Hz respectively are non-usable
wvhen used in a filterbank with varying
filter order. This limitation on analysing
bandwidth is a result of preserving the
desired impulse response of (nT)*.e ="T,

To illustrate the design procedure, consider
a filterbank, covering the range dc to
4500Hz, which ig split into three 1500Hz
sections with the channel spacing and
bandwidth increasing by a factor of 2 from
section to section. The complete initial
specification for this f£ilterbank (FBl) is
given in Table 1. To minimise distortion in
the composite amplitude response due to step

increases in bandwidth at section
boundaries, the filter orders also increase
from section to section. Fig 4 gives its
composite amplitude response. It is clear
that the response deviates significantly
from the ideal.
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Fig 4 Composite Amplitude Response of RFT

Filterbank FBI1.

By itgratively adjusting the channel
bandwidth, the number of channels, the

‘channel spacing and filter order, in

conjunction with viewing the resulting
composite impulse response, p(nT}), for each
section, a composite amplitude response
vhich approaches the ideal flat

characteristic can bhe achieved. By further
iteratively adjusting the bandwidth in each

section and observing the resulting
composite amplitude response a certain
degree of fine-tuning of the filterbank
design can be achieved. Fig 5 shows the
composite amplitude response for a
filterbank (FB2) with a specification given
in Table 1, which was designed by optimising
the specification of FBl in the above way.
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Fig 5 Composite Amplitude Response of
Optimised Filterbank FB2

Parameter Section 1 Section 2 8Section 3
FBl1 FB2 FB1 FB2 FB1 FB2
Channels 37 37 18 25 10 15

L=+=Chan.(Hz) | 40 40 1540 1540 3020 3060

Spacing (Hz) | 40 40 80 60 160 100
filter Order 2 2 3 3 5 5
Bandwidth(Hz] 32 35 64 44 128 72

ble 1 Filterbank Specificati
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3. Spectral Smoothing.

One way of computing the envelope of a
discrete spectrum is to treat the spectral
components as a time series and smooth thenm
using a bipass (forward and reverse time)
filter [Kormylo, 19741. However, the non-
uniform sampling interval that results from
using non-uniform channel spacing must be
removed by interpolation. The result is a
spectrum with non-uniform resolution but
with linear definition. Such a spectrum can
be smoothed not only by lowpass filtering
but also by homomorphic filtering.

Fig 6 shows the unsmoothed short-time
spectrum of a synthetic /a/ vowel, as
computed using the optimised filterbank,
FB2, in Table 1, overplotted with the
transmission of the model used to synthesise
the signal. Fig 7 shows the computed
spectrum after linear interpolation and
lowpass filtering with a variable, second-
order, Butterworth lowpass filter.
Different cut-off freguencies were used for
each filterbank section. Only over the
first two sections is there a reasonable
spectral match. To remove all of the
harmonic detail from section 3 requires an
~xcessive level of smoothing.
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Fig 6 Unsmoothed Short-Time Spectrum of

Synthetic /a/ Vowel.
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Fig 7 : Filter-Smoothed Short-Time Amplitude
Spectrum of Vowel /a/.

In contrast to bipass filtering, homomorphic
filtering results in the same level of
smoothing being applied to all sections.
Howvever, multiple peaks of unequal amplitude
occur in the cepstrum due to the different
channel spacing in each section and,
therefore, the spectrum of the high-time
part of the cepstrum will not be flat (Fig
8). In cepstral smoothing, this spectrum is
effectively subtracted from the original
spectrum and so the smoothed spectrum will
contain the spectral trend of the high-time
part of the cepstrum. The amount of
spectral trend can be determined by carrying
out a linear regression on the peak

amplitudes of the high-time harmonics in Fig
8 and this can then be removed from the
smoothed spectrum. Fig 9 illustrates the
result of applying this process to a
synthetic /a/ vowel. A comparison of Fig 9
with Fig 7 highlights the superiority of
using cepstral smoothing with trend removal
over bi-pass filtering for deriving the
spectral envelope of a non-uniform spectrum.
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Fig 9 : Cepstrally Smoothed Filterbank (FB2)
Spectrum of Synthetic /a/ with
Spectral Trend Removed.

4. Conclusions

This paper has described a technique for
designing uniform and non-uniform
filterbanks based on the Running Fourier
Transform (RFT). The RFT is implemented by
convolving the input signal with one of a
family of windows, h{(nT) = (nT)%e~="T, where
k and o may be chosen to specify the order
and bandwidth, respectively, of each
analysing filter.

Computation of an equivalent composite
impulse response has been used to optimise
the composite amplitude response of any RFT
filterbank. Finally a modified cepstral
smoothing technique for non-uniform spectra
has been presented and has been shown to be
superior to conventional bi-pass filtering.
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