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RESUME

Le processus de formation d'images 2-D d'objets 3-D en éclairage partiellement cohérent - c'est la cas de la
microscopie optique - ne peut étre correctement décrit qu'a partir de la transmission de ['intensité mutuelle ou de la
densité spectrale mutuelle de I'objet 3-D. Ceci implique un processus non linéaire avec le transfert d'une série de
Volterra . Le schéma d'orthogonalisation de Wiener est appliqué & la description de ce processus , mais avec un
produit scalaire différent qui est défini comme une moyenne d'ensemble sur une classe d'objets 3-D & imager.Des
G-Fonctionnelles Generalisées de Wiener (GWGFs) sont introduites et calculées, permettant une représentation
orthogonales de la densité spectrale mutuelle de 'objet 3-D. Les noyaux successifs de ces fonctionnelles sont
montrés dépendre du noyau leader des séries de Volterra associées. Les GWGFs sont ensuite exprimées sur une
base de fonctions orthogonales (les fonctions prolates sphéroidales linéaires sont adaptées au cas de la microscopie
optique avec des signaux-objets de produit extension x bande passante réduit).On montre que la formation
d'images 2-D d'objets 3-D en microscopie est alors correctement décrite dans le cadre de l'algébre tensorielle.

SUMMARY

We demonstrate that the imaging of a 3-D distribution of index of refraction by a partially coherent optical system
involves the transmission of series of Volterra functionals of the object function, that represent either the mutual
intensity or the image intensity. According to Wiener, an optimal description of this non-linear process is based on
the definition and calculation of series of orthogonal functionals. When applied to partially coherent imagery this
approach requires the introduction of a scalar product different from that used by Wiener for temporal signals. A set
average that characterizes the spatial - or spectral - properties of a specific class of optical objects to be imaged is
proposed. Up to the third moments of the object class are shown to be necessary to account for the transmisssion of
3-D informations in partially coherent imaging. They are supposed to be available to work out the functional
orthogonalisation scheme. As a consequence, generalized Wiener G-functionals (GWGFs) are derived , that yield
an orthogonal representation of the mutual spectral density, and the image spectral density . Similarly to Wiener's
work on the class of white, Gaussian temporal signals, the successive kernels of the GWGFs have the property of
being expressed in terms of the leading kernel of each GWGF. But the symetry features of Wiener G-functionals do
no longer hold here.

The next and necessary step in the implementation of GWGFs is their expression into series of orthogonal
functions. At the level of modeling adopted in this first paper it is not useful to specify this basis. Orthogonal series
expansions of the GWGFs of both the mutual spectral density and the image spectral density are provided. Within
this framework the object is described as a vector , and the imaging system is characterized either by signal-
independent matrices and tensors (for the transfer of the mutual spectral density ) or by signal-independent
vectors, matrices and tensors (for the transfer of the image spectral density).
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1°) 3-D OBJECTS AND THEIR 2-D IMAGES IN PARTIALLY COHERENT ILLUMINATION :
VOLTERRA IMAGING SYSTEMS

HOPKINS has shown more than 30 years ago that the object/image relationship in optical microscopy is based on
the transfer of the mutual intensity (or the mutual spectral density ) and not on that of the intensity (or the Fourier
spectrum). This fact seems to be ignored in so called "quantitative microscopy", but it plays a capital role in the
description of the imaging of 3-D objects, as shown by STREIBL. The basic equations to be used link the mutual
intensies impinging the object, leaving the object, and leaving the imaging system, viz. Jin(r1 ,r2),Job‘.(r1,r2),and
Jimg(r 1 ,r2). Let us recall them: an optical object being described by a 3-D distribution of the index of retraction,n(r),
is also expressed by a normalized function: v(r) = k2(1 - n2(r)) , k = 2p/k, kthe wavelength illumination. Assuming
that the object is slowly varying compared with | ,a non homogemeous differential equation can be written for the
ligth amplitude u(r): ( ¥ 2 + k‘2 Ju(r) = v(r)u(r). Then the mutual intensity function, J(rq,ro) , is shown to follow the
double equation: ( \7i2+ k2 )J(r1,r2) = v(ri)J(r1 ,r2) , = 1: 2 . Introducing the Green function, G(r) , of the

homogeneous Helmholtz equation allows to express the mutual intensity that emerges from the object, Jobj ,as:

‘Jobj(r1’r2) =Jin(r1,r2) + J’ dr1'G(r1,r1')V(r1‘)J(r1',r2) + j drz'G*(rZ,rz')V*(b)J(r1,r2') +

+[ ] dr1'dr2V(r1' Y (r’,z)G(r1,r1')G (r2,ré)J(r1',r2')
where Jin(r1 ,r2) denotes a solution of the homogeneous Helmholtz equation, the mutual intensity that propagates

when there is no object ( i.e. the illuminating mutual intensity). The mutual intensity which leaves the object is
transmitted by an imaging system that yields the mutual intensity , Jimg(r1’r2) ,in the image space. The-global

behavior of the imaging system can be accounted for by the classical relation :
Jimg(r PTo) = [ [d ry dr'zdobj(r1,r2)K( r T K (1 1)

where K(r,r) denotes the coherent spread function of the imaging system.
This expression can be written as a Volterra series if the object function v(r) is real (i.e. for a non absorbing object):

Iimg(T172) = N (Fpfp) + Jarv(r)h (rpror) + [ [ drgdr, VIEOV(roho(ry, rorirs)
with the Volterra kernels :
ho( I r2) = J'dr1dr2K(r1 ,r1)K*(r2,r2)Jin(r1 ,r2),h1 (r1 ,r2,r‘)= R(r1 —r')T(rz,r') +F{*(r2-r')T*(r1 )

h2( ry r2,r1' ,ré) = R(r1 -r1')R*(r2~ré)Jin(r1' ,r2') ,
R(r-r)= jdr‘G(r—r‘)K(r-f) , and T(r,r) = jdr K*(r—r)Jin(r',r)

Assuming the object to be real, its Fourier transform ¥ (u) , is hermitian . The image mutual spectral density then

appears as a Volterra series: dimg(u 1,u2) = HO +H ’ (Mu)) + HZ(’V’(u))
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u,-u,,u,-u

ie. 9 (U )= )+ [duv(u) h o(Uy-ug,uy-uy)

img 0(u1 Uy
with the Volterra kernels :

1(u1,u2,u) +] duiduéV(ui)V*(uz')h

ho(u1,u2) = tJ(u1 ,u2)K(u 1)K*(-u2)

h1(u1,u2,u) = R(u1)K*(—u2)din(u1-u,u2) + R*(-uz)K(u1) tjm(u1 ,u2—u)

hz(u1 Up Uy ,u2)= R(u1) R*(-uz)din(u1-u1,u2-u2) . '
Within the limited range of the present paper we will concentrate on the analysis of the mutual spectral density. A
complete treatment of the transfer of the spectrum - a particular case of the present one- can be found in other
publications.

2°)GENERALIZED WIENER G-FUNCTIONAL REPRESENTATION OF THE MUTUAL SPECTRAL
DENSITY

As pointed by SCHETZEN there are two difficulties in using Volterra series to describe the output of a non-linear
system. First, the Volterra series representation may converge for only a limited range of the system input amplitude.
Second, it is difficult to measure the Volterra kernels,hy, , since the respective contributions of each of the system

kernel can hardly be separated from the total system response. These problems were circumvented by WIENER by
forming an orthogonal set of functionals, Gy, , from the set of Hps Volterra functionals.Wiener functionals are

orthogonal when the input signals belong to the class of white, Gaussian, zero-mean time functions : they are called
G-functionals . A G-functional is a non homogeneous Volterra functional, Gn(kn,v( X)), that has the property of being

orthogonal to any Volterra functional , Hm(v(x)) , of degree m less than n :
< Gn(kn),v(x)) Hm(v(x)) >=0
where < > denotes the average value with respect to the variable y. The functional is expressed as:

n
G (k V()= kO(n) + {;1 fo _[dx1 dxpkp(n)(x1’ ,xp,y)v(x1) v(xp)

where kp(n)(x1, ,xp,y) is the pth order Wiener kernel of G,,. Wiener kernels kp(n) , p=0, ... ,n-1, are shown to be
determined uniquely from the leading kernel, kn(n) . Moreover they exhibit nice rules of parity, due to the Gaussian

properties of the considered input signals.The next step in Wiener theory of G-functionals consists of expressing the
kernels kp(n) using orthogonal functions.

2°-a) GWGFs of the mutual spectral density

Since optical objects are not white,Gaussian, zero mean signals we introduce in the fulfillment of the orthogonality
condition a scalar product that represents a set average over a class of objects to be imaged. A straithforward but
cumbersome computation yields the GWGF representation:

Ju,.u,) = G (k__,
(uyu,) p§0 otRop

"Gy lkg ). = Ropluptp) = Hp(ugalp) - Ry lgUp) - Rop(Uyuy)

V(u))

* glu_(u,vm)) = ~k01(u1,u2)+ J' duW(u) k11(u1,u2,u) , k01(u1,u2) =- jduM1(u) k11(u1,u2,u)

K, . (U u K

11

"Gy VU = Koo(ugup)+ [ AUVU) KUty ) + [ duldus VUV (u)yn(us Un,up,ug) ‘

plg) = AU upl) -Kyo(uy.up.u)
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[ 01U )M M (. ,us)]

)
2 My(u,u)) - M}Q(U{)]
[V (u,u,u') - M, (u,u)M, (u)]

(U, u Uy = [du' K, (u,,u,,uu)
1247172 227172 2
[Mz(uru) - M1 (U)]

with: KoolUyty) = - fdu1‘du2‘k22(u1',ué,u1,u

L8

RoplUpupupy) = My (ug-ug,u,-ug)
with the object class moments:
M, = <¥Uu) > My(ug,ug) = < ¥(ug) V*(u))>, Mgluuu) = < Mu) Y(u) ¥u) >.

2-b) Orthogonal series expansion of the mutual spectral density GWGFs .

Using a comeIete set of orthogonal functions, Pn’ the object spectrum is described by the vector a made up of its
[GN 2
expansion ; in the same way the GWGF kernels can be shown to admit a Schmidt-type expansion:

) . .
RpilUg:Us) = nZ mZ a ngim R (u)) PmOi(UQ)’ i=0,...,2 for the first kernels of G, @ and G,

0i 0i
0i " 0i
() ‘ .
R,.(u,,u.,u) = b R (u,)R u u), j=1,2 for the 2nd kernels of G,and G
ity =2 2 & Pngm R, (), (1) B ). 177 T2
1) 1 1j
Raa(Us,Uus,u,,ul)= | u. )R u, u,)R u
2olUptipliyip) = 2 2 3 % hy oM oslpatpy figlUs) mzz( 2) oot 9, 2

NapMaslpp oo

for the third kernel of Gz . A little algebra then yields the folllowing orthogonal representation of the GWGFs of the

mutual spectral density: Ju,,u,) =3 Y d.P.(u,)P.(u,) with:
1772 P g1 pr2

the spectral density matrix: D = (di.): D= D(O) + D(1)+ D(Z)

p® = A0 fom awer 6, 0= A% . &y fom awer 6,
(22)

,with

p@. A2, Gtppl@, Jtre

Matrices A(OI),i=O,...,2, 3rd order tensors B(U) ,j=1,2, and 4th order tensor C(22) are obtained from the

orthogonal representations of the kernels of the GWGFs. Notice that D(z) shows a generalized bilinear form of
the object spectral density vector a .

Applications to the description of image formation by a microscope using a linear algebra and tensor scheme based
on the use of Prolate Spheroidal Wave Functions is under publication elsewhere.

fa, from GWGF Gz .

REFERENCES
H.H. HOPKINS  Applications of coherence theory in microscopy and interferometry
JI Opt Soc Am 47,6(1957) 508-527
N. STREIBL Three-dimensional imaging using a microscope
JI Opt Soc Am 2,2(1985) 121-127
M. SCHETZEN  The Volterra and Wiener Theories of Non-Linear Systems, John Wiley ans Sons(1980)
N. WIENER Non-linear problems in random theory
The Technology Press of the M.LT., ed. John Wiley and Sons (1958)
J. DUVERNOY Volterra-Wiener partially coherent imaging systems -I: 3-D objects and Generalized G-Functionals
to appear in JI Opt. Soc. Am-A



