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RESUME
Dans cet article, nous présentons une implémentation de la méthode de Newton-Raphson pour le calcul du facteur sRectral
4 phase minimale d’une séquence de corrélation définie positive de dimension finie. L'avantage principal d’un‘e telle’ ’meth.ode
réside dans sa convergence quadratique. Chaque approximation successive consiste en la résolution d'un systéme d eqlfat.mns
linéaires. Deux algorithmes peuvent étre utilisés pour résoudre ce systéme.: le test de stabilité de Jury, ou une version symetrique
de D’algorithme d’Euclid. Plusieurs propriétés de la méthode de Newton-Raphson sont étudiées. La méthode est finalement
comparée dans son ensemble & d’autres méthodes classiques telles que la méthode de Durbin et celle de Bauer.

SUMMARY
In this paper, we present an implementation of the Newton-Raphson method to compute the minimum phase moving—av.era.ge
spectral factor of a finite positive definite correlation sequence. The major advantage of such a method is contained in its
quadratic convergence behavior. Each step in the successive approximation method involves a system of linear equations t}.m.t is
solved using either the Levinson algorithm backwards (the Jury stability test), or a symmetrized version of the Euclid algc.)nthm.
Various properties of the Newton-Raphson map are studied. The overall efficiency of the method is then compared with the

classical methods of Durbin and Bauer.

I. Introduction!

Given a finite symmetric positive definite discrete correla-
tion sequence {ri}l’-‘:_n, the moving average spectral factor-
ization problem consists of the computation of the moving-
average (FIR) digital filter H(z) of degree n, satisfying R(z) =
H(z)H(z™!). The computation consists of (n 4+ 1) quadratic
equations in the coefficients of the polynomial H{z). Such a
problem appears in computing Wiener filters, in system iden-
tification and data modelling. The solution is unique when
minimum phase is required, which means that H(z) has all its
roots inside the unit circle. If the correlation sequence is not
positive definite, then the problem is called a separation prob-
lem and alternative techniques and parametrizations must be
used [11].

Several methods have been derived to solve this problem,
The Bauer method [5] is based on the Cholesky factorization
of a banded Toeplitz correlation matrix that is symmetric and
semi-infinite. The non-zero elements in the rows of the Cho-
lesky factor converge to the minimum phase solution (see proof
and details in [7]). A faster algorithm to perform the factor-
ization was introduced by Rissanen [6] and Bareiss [8]. This
algorithm is linear in its complexity but also linear in its con-
vergence behavior. Another method was proposed by Durbin.
It is based upon the use of two autoregressive models in a dou-
ble inversion technique (4}, which is not iterative and so only
gives an approximate MA factorization.

A Newton Raphson technique was proposed by Wilson (1],
and extended to the matrix case by Arp [9]. It involves the
solution of a linear set of equations for each update. The ma-
trix involved in the system 1s called the Jury matrix. We have
proposed a fast version of the Wilson algorithm, based on a
factorization of the Jury matrix [2]. An even faster algorithm
for solving the same system is presented in this paper. It con-
sists in a polynomial representation and the use of the Euclid
algorithm [10]. A “super-fast” O(n(log;n)?) implementation
of the Euclid algorithm is even possible [12].
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This paper is organized as follows. First, we review the
Newton-Raphson method for solving this non-linear problem,
as well as some of its properties. We derive then a fast algo-
rithm to compute the Newton-Raphson step based on a fac-
torization of the Jury matrix. That factorization is obtained
by applying the Levinson algorithm backwards on the filter
coefficients. The complexity of that approach is O(2n?) op-
erations per iteration, which is an order of magnitude lower
than the O(n3/3) operations needed in a standard Gauss elim-
ination procedure. We introduce an alternative polynomial
approach and show how a symmetrized version of the Euclid
algorithm may also be used to solve the problem. The complex-
ity falls down to O(3n?/2) operations, a 25% gain compared
to the matrix presentation. The memory requirements of the
algorithm become linear in n whereas they were quadratic in
both the matrix presentation and the Gauss elimination proce-
dure. Finally, we show some experimental results and compare
the overall complexity of the Newton method with traditional
methods, such as the Durbin and Bauer methods.

Notations

th

h is a row vector of length n, h; is its ' component, and

h(t) is its {th approximation. H(z) is a polynomial in z, a
complex variable, and H,(z) is the tth approximation of H(z).
II. The Newton-Raphson Method '
Given the set of n correlation values {r;}% _ ., the finite
symmetric correlation sequence has z-transform

R(z)=R(z ") =ro + Zr;(z" +2z7™)

"Let’s represent R(z) by
R(z) = r8(z)

where r = [r0/2,71,-.-,7n), 8(2) = ¥(z) + $(z77), and ¥(z) =
(1,27,272,...,27"]7. In terms of the filter coefficients, r =
{ f(h), where f(h)is a quadratic function in the coefficients of h.
lThe quadratic function may be written f(h) = hF(h), where
'F(h)is an (n + 1) by (n + 1) matrix.

In a successive approximation scheme, one begins with the
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approximation Hy(z Z hi(t , with
i=0
h(t) = [ho(t)7 hl(t)i cen 7hn(t)],
and builds the error vector
e(t) = f(h(t)) - r = h(t)F(h()) -

The Newton-Raphson map is then defined by h(t-+1) = h(t) ~
e(1)57(h(t)), where the matrix S(h(t)) contains the partial
derivatives of e(t) with respect to h(t)

S(h(0)s = e

1t is easily shown that S(h(t)) = 2F(h(t)), so that the Newton-
Raphson iteration is given by

Vi,j € [0,n).

-1

h(t | 1) = h(t) - (h(t)F(h(2)) - r)[2F(h(t))]
- %(h(t) +rP1(h(1)))

which is the vector equivalent of the scalar “method of averag-
ing”: z(t + 1) = (2(t) + d/z(t))/2 to compute the square root
z=+d.

Some properties of the Newton-Raphson relation are:

1) aF( } = bF(a), for all row vectors a, b.
2) Post-multiply the matrix S(h(z)) by [u')(z) +(z7 1))
S(h(t)) 19(z) +¥(z77)] = Hy(2)p(27") + Hi(27" )y(2)
and use the map to get
Hy(z)Hys (27 )+ He(z 77 ) Hesa (2) =

i (1)
Hy(2)Hi(27") + R(z)

which is another way to characterize the map between H,(z)
and Hyoq(2).

3) By rearranging (1), we have
Hip1(2)Hpa (7)) =
(Hi(z) = Hipa(2)[[He(27') — Heea(277)] + R(2)

This equation together with the Rouché theorem are useful
to show the convergence of the method. The minimum phase
property of Hyi1(z), given the minimum phase property of
H:(z) may also be proven. It also shows that the method is
self-correcting. These conclusions are only valid if the actual
computation error is not big enough, so that zeros do not cross
the unit circle (See 1] for proof and details).

4) If é(¢) is the maximum absolute value of the elements
of the error row vector (difference between h(t) and the exact
solution h), at step ¢ then

§(t + 1) = M(n + 1)(6(t))

where M is a constant, and §(¢) small enough. This means
that convergence is quadratic near the solution [1].
5) The extreme points on the spectrum behave as

HH1(1):%[H(1) R((l))}
st = (B0 )]

which means that they behave as in the scalar case, so that if
the initial guess is such that Hg(1) = 1/R(1) and Ho(-1) =

R(—1) then those points will match from the beginning and
will not change.

6) If H,(z) is minimum phase then ho(t+1) > hqo(t)/2, with
equality if and only if R(z) = 0. If in addition |H,(z)|* > R(z)
on the unit circle, then ho(t + 1) < ho(t). To prove these
properties, take equation (7), divide it by H(2)H;(2~') and
integrate on the unit circle :

Sholt+1) _ 1oL /” R(e7%)
ho(t) 7 2m J_ o [Hy(ed®)P2

8) If H,(z) is minimum phase, |Hy(z)|? > R(z) on the
unit circle, and ho(t + 1) = ho(t), then Hyy1(z) = Hy(z) and
H,(z)H,(z71) = R(2), which means that we can test conver-

gence by looking at how the first component of the row vector
behaves.

dé.

III. The Jury Matrix
The Jury matrix S(h) is defined by (3]:

h; if =0,
S(h);; = { hiyj+ hi_; otherwise.
where h; is set to zero outside the range [0,...,n]. This ma-
trix also arises in a different context, in writing the normal
(Yule-Walker) equations for an autoregressive sequence, whose
correlation sequence 1s 74:
rS(a)’ = aR = ¢2[1,0,...,0]T
where R is the symmetric Toeplitz correlation matrix. which
top row is [rg,...,7s). This means that this matrix is use-
ful when computing the auto-correlation sequence 7; from the
auto-regressive (AR) filter parameters and also when com-
puting the auto-correlation sequence form the autoregressive
moving-average (ARMA) filter coefficients [10].
Eigenvalues The set of eigenvalues may be studied in a
rather simple way : if X is such that H(A) = H(A7'), then
H()) is an eigenvalue, since

Sh)H(A) + (A7) = HAW(ATH) + HOT)(A).

In particular, H(1) and H(-1) are eigenvalues of S(h). If
h; =0, m <i<n,then hy = H(oo) is an eigenvalue of order
at least 7 — m, as the matrix S(h) becomes partially triangular.
In summary, the matrix has one eigenvalue at H(1), another
at H(—1), another of multiplicity n — m at hy and the others
are of the type H(A) = H(1/X).

Determinant The determinant of S(h) may be shown to be
equal to (2]

det[S(h

= w1 o

=1 j=1

QQJ

where the coefficients o, are the roots of H(z). This result
allows us to predict that if a root of H(z) is close to the unit
circle, then the problem is ill-conditioned and convergence will
be slow.

Factorization The filter coefficients may be coded with the
reflection coefficients ki, ks, . . . , k,,. These reflection coefficients
are determined by running the Levinson recursions backwards:

b = [h"7,0] + ka[0,h" 77 T] ()

where J is the exchange matrix (containing ones on its main
anti-diagonal). Here superscripts denote the degree of the as-
sociated polynomial. Then the Jury matrix S(h") satisfies the
recursion:

0
S(h") = Qn S(b™™) 0
0 h”d RPT R
with
1 kn
Qn =
kn 1

This procedure may be repeated to produce the factorization

S(h) = QaQn-1...Q1L, where
hg
0 A)

L=1|0 h R
0 Aol Rp~1 ol

In @, the matrix J has dimension (¢ + 1) by (¢ + 1). The @;

matrix has inverse

1
o= o k?)(I— kJ) 0
0 I
To compute x(t) = h(t + 1) — h(t}/2 = rS~(h(t)), one just

needs to solve a triangular system of n equations. The factor-
ization induces another formula for the determinant of the Jury
matrix in terms of the variables of the algorithm (the reflection
coefficients):



(1-k2), if i = 27,

Det Q; = { (1-k2)(1+k;), ifi=25+1.

so that
Det S(h) = (ho)™** [] Det Q-

i=1

as hi = hy = hg. This result was first found by Barndorff-
Nielsen and Shou [13]. The closer k; is to 1 or -1, the more
unstable the algorithm, or equivalently the more ill-conditioned
1s the system of equations. Instability may then be detected
in real time, before it occurs. The algorithm to solve the Jury
system of equations has a complexity of 2n? operations and a
memory.requirement of n? /2. The quadratic memory require-
ments may be dropped at the expense of building the lower
degree polynomials when needed, at a complexity of n?/2 op-
erations.
IV. Symmetrized Euclid Algorithm

In this section we introduce an alternative algorithm to com-
pute the Newton-Raphson step, based on a polynomial treat-
ment. The system of equations (1) used in the previous pre-
sentation is equivalent to the polynomial equation

Hy(2)X(z™") + Hi(z"1)X(2) = E(2) + E(z™")
with X(z) = Hy11(2) — Hi(2)/2 and

(3)

E(z) =ro/2+ Zriz_i.
i=1

The algorithm to solve (3) consists of two steps per degree
: one step to reduce the degree of the right hand side, and one
step to reduce the degree of Hy(z). The first step consists of
replacing E(z) = En(2) by En_1(z) such that

E, 1(z) = En(z) - anz " Hy(27?)

where the variable o, is chosen so that the degree of E,_;(z) is
strictly less than the degree of E,(z). Equation (3) is modified
to

Hi(2) [X(277) — anz™] + Hy(z77) [X(z) — onz™™}
= Bans(2)+ Enca(=7)

The second step consists of replacing the degree n polynomial
H,(2) = G,(z) by the degree n — 1 polynomial Gn_;(z) (the
Jury algorithm, or Levinson’s backwards):

Gn_1(z) = Gu(z) - ka2 "Ga(z71) (3)

Equation (5) is just another way to write equation (2). The
transformation between G,(z) and G,_1(z) may be written

] alule

Use this reduction in equation (32) to get

Gn-1(2)Xn-1 (27 )4 Cao1(27) Xn1(2)
=E,_1(2) + En.a(27h)

(4)

where X(2) = Xo(2) and
[Xféi)l)} = an [}
Lo )

The same process is then iterated with decreasing degree. In
summary, we have the following symmetrized Euclid algorithm

Down Steps Fori=mn,...,1:
G;i1(2) = Gi(z) - kizTiG(z71)
E; 1(z) = Ei(z) - aiz_iGi(z'])
Solution  X¢(z) = Eo(z)
Up Steps  Fori=1,...,n:

X,'(z) = X,-_l(z) + P [a,‘ — k,'Xi_l(z_])]

This algorithm requires O(3n*/2) operations and linear mem-
ory storage O(5n), which is an improvement compared to the
previous matrix method. Note that the main saving is obtained

by the use of both the factorization of the Jury matrix and the
simultaneous reduction of the right hand side.
V. Experimetal Results
We have implemented the Newton-Raphson fast algorithm
on three examples in order to compare the results with several
other techniques. The error measure at step t is defined to be

e(t) = 3 (halt) - ha?
=0
where the exact coefficients are {h;}* , and {hi(t)}., are the

coefficients of the ¢th approximation. The exact filter in our

examples is:
n

H(z) =[] - 227"

i=1

where
1) m=4, 2z =e%, 8 ¢ (£60°+1407)
2) n=§ 2z =.9¢% 6 e (£25° 490, +155°)
3) n=8, H(z)=1+.95:"°

Convergence is then reached when the error e(t) is less than
a threshold . To compare the performance of the Newton-
Raphson method, we ran this example with several methods:

1) Durhin [4] This algorithm is based on two autoregressive
models, the first one to fit the original correlation sequence,
zero-padded up to L {L > m), and the second to fit the cor-
relation of the parameters of the first. The two autoregressive
factorization problems are computed using the Levinson algo-
rithm. This method is not a successive approximation method,
as the only freedom is in the choice of L. The minimum phase
property of C(z) is ensured.

2) Bauer (5] Compute successive rows of H, the Cholesky
factor for the symmetric banded Toeplitz matrix B — T HT.
H is banded and lower triangular. If the matrix R is extended
to become semi-infinite, the non-zero terms in the rows of H
converge to the constant solution to the problem. Convergence
and minimum phase are ensured {7].

3) Rissanen (6] This is a fast version of the previous algo-
rithm, which uses the Toeplitz property of R in a more efficient
way. It computes the same parameters as the Bauer algorithm
at each iteration, but with fewer internal variables and opera-
tions.

Figures 1, 2, and 3 show the magnitude of the frequency
response for estimates of H(z) at various steps of each algo-
rithm, for the first example. The magnitude responses are
plotted on a logarithmic scale. Figure 1 shows these plots for
the Durbin method when the values for the long AR model
order L are equal to 1,2,4,8,... Figure 2 shows the same plots
for the method of Bauer and Rissanen, and the steps plotted
also correspond to a geometric progression: 1,2,4,8,... Figure 3
shows the same plots for the Newton method and every single
step is plotted. The logarithmic scale has been chosen to em-
phasize the behavior of the algorithms at the polynomial zeros
(which are on the unit circle for that example).

Table 1 compares these algorithms in terms of their compu-
tational complexity per iteration, memory requirements, and
convergence behavior. Note that the Bauer algorithm is more
expensive to use than the Rissanen algorithm, as is expected.
If the necessary value of L in the Durbin method is too large,
then it is also very expensive. With £ = 1078 for the first ex-
ample, Table 2 gives the number of floating point operations
necessary to reach an error less than or equal to €. The z in
Table 2 is due to the fact that the Levinson algorithm was
unable to lower the error below the threshold in a reasonable
amount of computation (L < 2000). The fast Cholesky algo-
rithm (Rissanen) can be made faster than the Newton-Raphson
algorithm with the use of a parallel vector machine. The num-
ber of iterations (8 for Newton and 361 for Rissanen in the
first example) suggests that the Newton method will have bet-
ter behavior when implemented using finite arithmetic, as the
error will not accumulate as much. The Newton method uses
the data 7; at each iteration, and the Rissanen algorithm uses
it only at the beginning, meaning the later method is not a self
correcting method.

VI. Conclusions

From these theoretical and computational results, the New-
ton method, implemented with a fast algorithm, appears to
be a very efficient and stable way to perform the moving av-
erage factorization of a finite correlation sequence. Note also

I

=
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that this factorization is equivalent to factoring a symmetric
polynomial into its square roots.
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| Algorithms | # Mult/Div | Memory Behavior—’
DURBIN | L(L+n) = L ‘

| BAUER n(n + 5)/2 "n(n +1)/2 Linear ‘

I RISSANEN 2n + 2 2n Linear

i NEWTON 3n?/2 5n Quadratic

Table 1: Comparison of Algorithms for Moving Average
Spectral Factorization.

Algorithms | First Ex. |Second Ex. | Third Ex.
| DURBIN b'¢ 3240 622505
. BAUER 6624 1353 18460
RISSANEN 3630 547 6390
NEWTON 192 216 672

Table 2: Number of Operations for the Moving Average
Factorization Algorithms.
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Figure 1: Frequency Domain Behavior of the Durbin Method.
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Figure 2: Frequency Domain Behavior of the Rissanen,
Bareiss, Bauer Method.
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Figure 3: Frequency Domain Behavior of the Newton Method.



