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Le concept d'enveloppe spectral dérivé du périodograme donné est introduit. L'intérét de cette fonction est
montré, soit en non-paramétrique soit en paramétrique rapprochement. Les propriétés agréables de I'enveloppe
associé avec la magnitude du sur nomé spectrum analytique indiquent la nouvelle fonction comme la candidate la
plus appropriée comme restrictions en estimation spectrale variacionelle. Finalement, un estimateur spectrale
ARMA bien supporté a partir de restrictions de corrélation et d'enveloppe est dérivé. En éffect, l'usage de
I'enveloppe du périodograme en astimation spectrale, soit pour estimatives finales soit pour pré-estimatives en
procédés plus complexes, doit étre préferé vis-a-vis d'autres possibles fonctions comme le cepstrum. Ceci se
doit au caractére lisse, & la stabilité statistique et au modéle linéaire, dérivé de la fonction d'autocorrélation
causale, que l'enveloppe du spectrum ou du periodograme a.

The concept of spectral envelope derived from the given periodogram is introduced. The interest of this function
is shown both in the non-parametric as well as in the parametric approach. The nice propetrties of the envelope
associated to the magnitude of the so-called analytic spectrum, aprize the new function to be the most suitable
candidate for additional constraints in variational spectral estimation. Finally, a well supported ARMA spectral
estimate from correlation and envelope constraints is derived. In fact the use of periodogram envelope in
spectral estimation, both for final estimates or for prior estimates in more complex procedures, should be
prefered with respect other possible functions like cepstrum. This is due to the smooth character, the statistical
stability and the linear model, derived from the causal autocorrelation function, that the spectral or the
periodogram envelope has.

1. INTRODUCTION

Given a signal record there are two basic
representations of it, which are derived from its
geommetric representation in the complex plane. Most
of the cases we are concerned with the. real and
imaginary parts of the signal under analysis but the
alternative, the enveloppe and phase representation
have been proved very efficient in many cases and
applications. This work deals with the envelope/phase
representation of the power spectral density and its
interest in variational approaches for spectral
estimation.

Further insight can be gained in giving an explanation to
the name of spectral envelope methods used to refer
parametric methods for spectral estimation. It is well
known in communications systems that the product of
two signals named a(t) and c(t) has an envelope
determined by a(t) and the envelope of c(t).

x(t) = a(t).c(t) (1.a)
ex(t) = la(t)|.ec(t) (1.b)

In order to satisfy (1.b) it is required that a{t) is a low
pass frequency signal and c(t) is a high or band pass
frequency signal which does not overlap A(w).
Furthermore, if eg(l) is a constant the previous
statements proves that, under some circunstances, the
information from one signal embeded in multiplicative
noise can be recovered from the envelope of the given
signal.

The property mentioned is of capital importance in
terms of spectral estimation. Let us assume that a
signal model with frequency response H(h) produces
X{(®) when the input is a white noise record with
Fourier transform W(w). Being the overlap of A(t) and
o(t) small it can be said that the envelope of X(w)
becomes the magnitude of H{w) multiplied by the
envelope of W(w). At the periodogram level, it can be
said that approximately the periodogram envelope of
X(w) is equal to the magnitude square of the transfer
function H(w) multiplied by the periodogram envelope
of the white noise input. This last term is a constant
over all the frequency band of interest.

Epx2(0) = [H(®)|2.Epu2(@) Ep2(@) =Ko (2)
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Based in (2) it is why, in trying to smooth the
periodogram behaviour, the maximum entropy
approach produces an estimate of the spectral
envelope. This point of view, even it seéms to be
artificial, supports somehow the similarity of
parametric approaches for spectral estimation results
with the given data periodogram envelope.

Nevertheless, the way this work is going to focuss the
role of periodogram envelope is quite different from it
is stated above, the starting point will be motivated by
the interest, like in speech analysis/synthesis and
recognition, of the periodogram envelope. The potential
of periodogram envelope is shown by its use in geting
new signal models and a well supported ARMA
variational approach.

2. THE PERIODOGRAM ENVELOPE

The content of this section can be viewed as the non-
parametric approach of the framework supported by
the envelope in spectral estimation problems. Given the
periodogram P{w), computing its Hilbert transform
Hp(w) the squared envelope is given by (3).

Ep2(e) = P(w)2 + Hp2(0) (3)

The interest of Epz(co) instead P(o) in practical
applications resides in two distintive features. The
first one is its smooth character which avoid the
undesired sidelobes of the analysis window which show
up in the periodogram. This smooth behaviour can be
viewed as a consequence of removing the instantaneous
phase from the periodogram.

P(w) = Ep(w) Cos ¢(w) (4)

Second property of Ep(w) is the robustness or
statistical stability over different sample data records
belonging to the same random process. To support this
experimental behaviour of the periodogram envelope,
we need to report the concept of causal autocorrelation
and analytic spectrum.

The autocorrelation function of a random process {x} is
an even function which can be decomposed in a causal
and non-causal functions as shown in (5).

R(z) = Re(2) + Re(z'h) (5.a)
Rc(z) _—12—1 > (5.b)
q=1

The Fourier transform of the causal acf can be named
as the analytic spectrum, Ap(w) defined as Rg(exp

o)) [1]. Note that the magnitude of the analytic
periodogram is the periodogram envelope.

Ap(o) = Ep(o) = |AP(w)] (6.b)

Rc(exp(jo)) ;
The analytic spectrum or, its estimate the analytic
periodogram, has its real part always positive. As a
consequence its inverse is also definite positive, from
these properties it can be concluded that Ap{o) and its
inverse are both analytic and minimum phase functions.
From the minimum phase it is easy to conclude that
given Ap(w) we can derive Ep(w), and, viceversa,
given Ep(w) obtaining the minimum phase associated we
can obtain Ap(w) and P({w). In summary, doing spectral
estimation we handle the same problem that spectral
envelope or analytic spectrum estimation.

Furthermore, in clarifying the claimed statistical
stability of the envelope, results from its fourth order
function character. To be more clear, the inverse

Fourier transform ¢, (m) of the squared envelope
EP2(m) is related with the causal a.c.f. in an additional

autocorrelation form.

o(m) = 21—'[“ Ep2(w).exp(jmo) do  (7.a)

N-jm
S ra).r(gem) (7.b)
q=0

o(m) =

ZI—‘

From (7.b) it could concluded the smooth behaviour of
the periodogram envelope and its statistical stability
when compared with the periodogram.

The formula (7.b) provides the way out to compute the
periodogram envelope. Nevertheless, computing the
magnitude of the Fourier transform of the causal acf is
the fast way to obtain the target function.

Finally, note that in evaluating the periodogram
envelope the lag-window used for rg(n) has no
consequences on the positive character of Ep(w). This
in an additional advantage of using Ep(®) as fina!l
estimate or first order information in any spectral
estimation procedure.

3. SPECTRAL ENVELOPE AND MODELS

In this section we will examine the incidence of signal
models on the envelope representation.

Assuming the general case of an ARMA model for the
random process under analysis, the acf can be
represented by the quotient of two polynomials C(z)
and D{(z).

C(z)C(z-1) _H(z) . H(z-1)
D(z)D(z'')  D(2) " p(z1)

R(z) = (8)



When R(z) is decomposed in two quotiens which differ
in the rot location inside and outside the unit circle, it
becomes clear that the analytic spectrum Ag(z) can be
associated with the first term.

H
RC@)=AS@)=B%% (9)

The other relationships of interest are derived from
(8) and (9). The function we have in mind are the
power spectrum S(z) and the squared envelope E(z)

E(z'1)

S(Z) _ R(Z) — 9—@)%1). N (10 a)
- D(z)D(z"1)’ '

-1
E2)E(z!) = halHE ) (10.6)

D(z)D(z™")
This last formula reveals that the envelope containts
the same poles that the actual power spectral density.
Also the rational character of E2(co) proves that there
is no bandwidth extension from the spectral density to
the envelope. This last property suggest that it could
be of interest to apply all-pole modelling to the
envelope, which will have more sense than over the
power spectrum mainly for speech recognition
applications. But, let us summarize which are the
reasons behind the interest of the envelope
representation.

In variational procedures for spectral estimation there
are two different functions, the objective to be
extremized and the constraints. As claimed in [2] the
crucial choice for the resulting quality is the kind of
constraitns to be handled. The objective function
dictates only the way the information contained in the
constraints is used or the signal model selected.

Thus, it is clear that, regardless the signal model or
the objective, the key choice is the contraints we set
in finding an extremum for a given objective. To be
more concrect, the way to derive contraints is always
from an associated function to the periodogram as it is
shown in (11).

1
pin) =5~ _“n v(P(0)) exp(jnw) do (11)

Note that for y(.)=0 we have the classical
autocorrelation constraints. When dealing with
additional functions wy(.) to add more constraints to the
variational procedure it is necessary to select wy(.)
with the following features:

- Do not introduce redundancy with correlation
constraints.

- Do not use non linear functions which produce
bandwidth extension.

IN
IN
(A

- Use function which produce constraints p(n) with
the highest statistical stability.

- Do not introduce highly non-linear problems to be
faced in searching procedures to solve for the
parameters defining the Lagrangian.

It is clear that envelope constraints are a valid
candidate for additional constraints for a variational
procedure.

Envelope constraints:

T Ag(e) As (0) exp(jme) deo; m=1,Q

1
olm =57 |

(12.a)

Correlations constraints:

rn) = 21_n J:: Ag(o) exp(jnm) do; n=0,Q (12.b)

At this moment, the objective have to be selected in
order to obtain a desired signal model. When an ARMA
model is the choice, the objective must be:

. 1 *
0'(0)= L= [ Asto) As’(0) do (13)

Forming the Lagrangian and setting to zero the
derivatives with respect the objective Ag(w) a
rational model is obtained for the analytic spectrum
estimate.

B
As() = —D% (14)

Where both polynomials are minimum phase. The final
spectral estimate is derived by taking the real part of
As(jo).

4. ALGORITHM FOR ARMA SPECTRAL ESTIMATION

In facing the problem of finding the coefficients b(q)
and d{(q) of the polynomials B(z) and D(z) the ideas
reported by Mullis and Roberts [3] for mixed first and
second order information in filter design will be used.

First at all, note that in order to hold for the
correlation constraints, due to the structure of Ag(z),
the following set of equaticns can be set:

B
As() = B‘é)é Ro() (15)

where the first Q+1 lags of Rg(z) are the given data
autocorrelation sequence including the zero lag. Thus
rewriting (15) as B(z)=Rc(z).D(z) and because rg(n) is
a causal sequence we obtain (16).
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b=Red ‘ (16)

Where

bT = [b(0),b(1),...,.b(Q)] (17.a)

dl = [d(0),d(1),...,d(Q)] (17.b)
r(0)/2 0 0 .. 0

Rc= r(1) roy2 o ... 0 (17.c)
r(2) r(1)  r0)y2 .. 0
P T

and symbol 1 indicates transpose.

Going to the envelope constraints, we can see that,
naming @®{z) o the z-transform of the measured 6(m)
and obtained from the periodogram using (18), it is

¢(m)=-21—1;J.f7t Ep2(m) exp(imw)dw; m=0,Q (18)

possible to derive equation (19) for the envelope
constraints.

B
s(2'1)5%)l=<1>(2) (19)

Before going further in the algorithm, it is worthwhile
to remark two aspects of the above formulation. First,
note that, both &(z) and Rg(z), are z-transforms of
the corresponding sequences containing Q+1 samples
from the periodegram, and the rest are the
extrapolated values by the analytic spectral model.
Second, the lag zero of the sequence ¢(.) which forms
®(z) is just the value to be extremized (see (13)); to
state this difference we will denote the optimum value
as q)*(O), which has a different value that the ¢*(0)
obtained from (18). We will be back in a moment over
this point.

Thus, because Rg(z™!) is equal to Ag(z-1) (see (15)),
we can obtain the following matrix formula for (19).

ReTb=0d (20)

Being
0 (0) o(1) 0(2) .. 6(0)

o= 0(1) 0*0) o(1) ... 6(Q-1) (21)
0(2)  o(1) 9%(0) ... 6(Q-2)

o(Q) #(Q-1) 9(Q-2).. ¢7(0)

Finally, by sustitution of (18) in (20) we achieve the

resulting equaticn to be solved in order to find vector d
and vector b. .

(Rc'Re)d = od (22)

At this moment, it is important to stablish that ¢
contains an unknown entry (i.e. the objective ¢*(0)).
Naming ¢o the matrix that, with the same structure
that d)_,?:ontains the measured value ¢(w®), the
differe;ce between them is just shown in (23) being |
the identity matrix. )

0(0) = 0 (0) + A
fo=0+ A.=I

(23.a)
(23.b)

Doing this, equation (23) can be reformulated as (24).
(¢o - Rc)si Ad (24)

Based on the fact (by the way they are derived from
Ap{w)) that matrix qlo RCTRC must be definite
positive, the optimum value for A is the minimum
TRC With this, the coefficients d

are the coefficient of the minimum eigenvector of (24)
and’ the optimum ¢(0) is just the measured value ¢(0)
minus the minimum eigenvalue defined by (24). This
completes the algorithm. The algorithm reported here
is a short description of the principles contained in
reference [3], further details on the algorithm,
theorema and properties associated to the mixed

second and first order information matrix ¢q - BCTBC,

eigenvalue of ¢q -

can be found in this reference.
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