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RESUME

La distribution de Wigner-Ville (DWV)
représentation bidimensionnnelle temps-fréquence d'un

est une

monodimensionnel signal temporel et il est évident
qu’il y a une redondance de 1’information dans cette
distribution. Dans l’article on présente le probléme
de 1l'utilisation optimale de la décomposition selon
les valeurs singuli®res (DVS) pour la compression du
spectre de Wigner-Ville. On a formulé les conclusions
générales concernants ce probléme. On a présenté des
examples du traitement des signaux dans le plan temps
-fréquence ol on utilise le DWV ainsi que la DVS, On a
comparé 1’efficacitée de 1’utilisation de la méthode
du traitement temps-fréquence du signal, présentée
ci-dessus, avec l’efficacité de certaines autres
methodes utilisées pour la filtration du bruit.

SUMMARY

The Wigner-Ville

dimensional time-frequency (TF) representation of a

distribution (WVD) is a two

one dimensional time signal and it is obvious that
there exists a redundancy of information contained in
it. The paper discusses a i)roblem of optimal
application of the singular value decomposition (SVD)
for the compression of +the WV-spectrum. General
conclusions are formulated in it and some examples of
signal processing in the mixed TF domain by means of
the WVD and the SVD are given. A short performence
comparison is made between the presented technique and
the other methods of signal processing in the case of
noise filtering.

1. INTRODUCTION

The Wigner-Ville distribution (WVD) [1-4] is one
of the mixed time-frequency signal representations
(MIFRs)., Its main advantages over the other MIFRs from
the Cohen’s class (short-time Fourier transform,
Richaczek distribution, Page and Levin representa-
tions, etc.) are better resolution (higher energy
concentration in the mixed time-frequency (TF) plane)
and direct viewing and simple computing of frequency
modulation law for monocomponent signals. The cost one
must pay for good resolution of the WV-analysis are
negative values and so-called cross-terms that have no
physical significance but can appear in the resultant

spectrum [5]. The cross-terms generation is caused by
the bilinearity of the WV-transform.

On the other hand the WVD is a two dimensional
time-frequency representation of a one dimensional
time signal (usually contaminated with noise) and
there exists a redundancy of information contained in
it.

The problem is how to eliminate the negative
values, the cross-terms, the information redundancy
and noise component from the signal WV-spectrum
without loosing its good resolution. Appropriate
smoothing of the WVD can be tolerated in many
applications but it is not an optimal solution,
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The singular value decomposition (SVD) is like
the WVD also a high resolution tool and it is widely
used for compression of 2D data [6-9]. The reduction
of information redundancy is realized in it by means
of orthogonal decomposition of the matrix and not by
its 2D smoothing. The application of the SVD for the
compression of the WVD was proposed by Marinovic and
Eichmann in 1985 [10]. They suggested a direct
decomposition of the TF matrix of the WV-spectrum. A
new approach relying on the SVD of the WV-kernel was
proposed by Boashash and Whitehouse [11].

The present paper is the continuation and
extension of [10] and the authors would like to answer
the following questions:

1. For what kind of signals the application of the SVD
for the compression of the Wv-spectrum is optimal?

2. Is it possible to use the SVD for elimination or
reduction of the cross-terms in the WV-spectrum?

3. What is the efficiency of time-frequency signal
processing [12-14] by a joint application of the SVD
and the WVD?

2. OUTER PRODUCT INTERPRETATION OF THE WVD

In the discrete case the smoothed (M>l) cross
pseudo-WVD (CWD) is given by the following formulae
[2]

N-1

2M-1 -j26k
CWD (n,8)=2 3 Z(n,k)e )
2N-1 et (1)
, Mol «
z(n,k):|hN(k)| X gy(m)X (ntm+k) Y (ntm-k) , (2
m=-M+1 )

where X(i), Y(i) denote complex-value discrete-time
analytic signals associated with real-value discrete
time signals x(i), y(i) while hN(k) and gM(m)' are
symmetric, normed data windows with nonzero values
2N-1 and 2M-1, respectively ("%"- complex conjugation,
"n''- discrete time, "€"- discrete frequency).

For M=1 the WvV-kernel Z(n,k) is reduced to the form

Z(n, k)= |y () | X (n) ¥¥ (nk) 3)

and (1)(3) defines unsmoothed CWD. When hN(k) is a
rectangular window, (3) can be reduced even further

Z(n,k)=X(n+k)Y" (n-k) . (4)

When X(i)=¥{(i), (1)(2),
appropriate auto WD (AWD).

(1)(3) and (1)(4) define

Let assume that M=1 and h.N(k) is a rectangular

window and the cross pseudo-WVD is defined by
equations (1)(4). Let variables in (4) be changed in
the following way: n+k=p1, n—k:p2 [15]. In this case

Z(n,k) can be interpqated as an outer product of two
vectors: X(pl) and Y (pz), and the TF matrix of the

CWD defined by (1)(4) can be shown as a result oﬁ the
Fourier transform performed on 2N-1 data X(pl)Y (pz)

n_n

lying on the lines perpendicular fo the axis "n",
symnetrically to these pairs X(pl)Y (pz) which belong

to that axis. This fact is demonstrated in figure 1.
It shows seven segments connecting elements that are
necessary for computing the CWD (N=4, 2N-1=7) for time
moments n=4,5,6,.,10. It is important to note that not
all the elements lying on lines perpendicular to the
axis '"n" can be used for the computation of the
WV-gpectrun. The used ones are marked with cross in
figure 1.

Figure 1 gives interesting insight into the
computational structure of the unsmoothed CWD (1)(4).
It is easy to expand this approach a step further and
to interpret a computation of the unsmoothed CWD with
window hN(k) different from rectangular (1)(3) and of

the smoothed CWD (1)(2) in the outer product plane. In

the first case we only multiply elements X(n+k)Y*(n—k)
of the kernel (4), n=4,5,6,.,10, k=-3,.,0,.,3, lying
on the marked linis in fig,1 with appropriate
coefficients |hN(k)| . In the second case we first

make summations of 2M-1 pairs X(n+k)Y*(n—k) lying on
neighbouring lines (k=const, n=n0+m, m=-M+1,.,0,.,M-1;

no-time point for which the smoothed spectrum is
computed; in fig.l no:4,5,6,.,10) with weights gM(m)

and then we multiply tth resultant smoothed kernel
with coefficients IhN(k)l as it was described above.

Fig.1l can also be used for the analysis and
development of the pipeline and parallel algorithms
for on~line effective computation of the WV-spectrum
[16,17] as well as it can help the understanding of
the signal synthesis procedures [13-14} from the
modified AWD and CWD.

3. SINGULAR VALUE DECOMPOSITION OF THE
WV-SPECTRUM

3.1 Theoretical background

Let Ac€™ denote a complex mtr}n:)(m with ranknmr
(r<min(m,n)). Then unitary matrices UsC and veC
exist such that [9,10]

r T
A:UDVH: ZO’.U.GI:I= ZA. (5)
. A T i
i=1 i=1

where

_[so
=[5 o]
and S=diaglo; 0, 05 0)s 0,,0).04 %o (H
denotes transposition and conjugation). (5) defines

the decomposition of the matrix A on the singular
system (O'i,ui,vi), i=1,2,3,.,r. It represent a sum of

outer products of vectors Gi and L—JI;I which are taken
with weights © 1 called the singular values of matrix
A. When only the first "p" singular values o, are

gignificant, summation in (5) can be reduced to the
first "p" components [10]

b P

D_ — H_

AP= Z o.u,vi= Z A, P (6)
i=1 i=1

The matrix AP received this way has the rank p and it
is the best approximation of the matrix A in the least
squares (the Frobenious norm) sense in comparison with
the other matrices of this rank. The absolute
approximation error £ a is given by the formule [10]

T
¢ =ia-aPpt 5 oAV,
i=p+l
where

m n r
[l § T 2 1Y% 1 ¥ oAl2,
j=14=1 * i=1 *

In the case of the WD, the SVD matrix
approximation (6) can be applied both to the time-time
matrix of the Wv-kernel (4) (marked in fig.l with
seven segments) and to the time-frequency matrix of
the computed WV-spectrum (1)(4). Since the Fourier
transform is a unitary transformation and it does not
change a singular system of a matrix [10] both methods
give the same results. Thus the second method is
prefered. It allows to treat the SVD of the WVD as a
one of many possibilities of modification of the
computed WV-gpectrum and it will be discussed further.

The idea of using the SVD for the compression of
information contained in the matrix of the WV-spectrum
is based on the assumption that signal energy is
concentrated in the matrices Ai of the p first

singular values (6), while the noise energy is spread
more or less uniformly in all matrices Ai’ i=1l,.,n

(fig.1,2,3 in [10]). It is due to the fact that the



analyzed signal is expected to have in general a
time-varying but well-defined frequency structure as
opposed to the noise and it is hoped that this
structure has a geometrical pattern easily decomposed
by the SVD (easy means with a few singular values)
[6]. The use of (6) leads in this situation to the
reduction of  noise contribution and to the
simplification of spectrum interpretation. When it is
additionally possible to synthesize a signal from the
TF matrix of the WV-spectrum after its modification by
means of the SVD, the described technigue can be used
also for time-frequency noise filtering (sec.4)
[12-141.

3.2 Remarks on experimental results

Efficiency of the SVD application for the
compression of the WV-spectrum was tested in the
computer system described in [16]. The experiments
performed result in the formulation of the following
remarks [17]:

SIGNAL WITHOUT NOISE

1. Using the 8SVD for the compression of the
WV-gpectrum is effective especially in the case of TF
matrices with vertical-horizontal structures in which
changes of elements values are parallel to the time
axes or to the freguency axes [6]. In this case the
matrix has only a few significant singular values
(spectrum of: one sinusoid -1 sv, two sinusoids -2
sv’s, sinusoid with Gaussian time envelope- 1 sv, two
sinusoids with Gaussian time envelopes which do not
coincide in time -4 sv’s; but spectrum of chirp signal
with Gaussian time envelope -several sv’s).

2. In order to achieve a physically true approximation
of the signal spectrum (frequency modulation laws) by
means of the SVD it is necessary to make the summation
in (5) to the last significant sv of the signal. In
general no temporary level of decomposition (Al, i<p}
(6) can give sufficient information about the signal
spectrum structure, especially when the "outer”
cross-terms [5] of the WVD are present. In general the
cross—-terms components as a whole or as a part do not
appear separately in any matrix associated with one or
some sv’s but they always coincide with a "signal”
part of the spectrum. As a result of this fact it is
impossible to eliminate the cross-terms from the
WV-spectrum by means of the SVD [{17]. The process of
the decomposition itself can differ significantly for
a slightly different spectra.

SIGNAL WITH NOISE

3. When an additive noise W(i) is added to the signal
S(i) (X(1)=8(i)+W(i)) +the unsmoothed AWD of the
analyzed data X(t) can be represented in the following
form {1,5]:

AWDX (1,6 ) =AWD (1,6 ) +AWD" (n,, & ) +2Re (CWD" W (n,0)}
(1)

where AWDX(n,G), AWDS(n,G) and AWDw(n,e) denote the
auto pseudo-WVDs of X(i), S(i) aéxde(i) {(auto means
that X(i)=Y(i) in (1)(4)) and CWD"’ (n,®) denotes the
cross pseudo-WVD between S(i) W(i). We are
int%rested in extracting the AWD (n,®) from the
AWD" (n,®) by means of the SVD. Since the SVD is not an
"additive" operation in the segse of singular values
Ui (5), sv’s of the matrix AWD (n,9) are not the sum

of appxgxwiate sv’s of the matrices AWDS, AWDW and

2Re{CWD”'"}, direct comparison of sv's can give only
approximate information about participation of the
signal, noise and "cross" compogents in the
approximation matrices Ai of AWD (n,0) (6)(7).

However, in general Susing the SVD is purposeful only
when the matrix AWD (n,®) has few sv's anchthey are
bigger §hﬁn appropriate sv’s of matrices AWQ (n,@) and
2Re{CWD"’ (n,8)) [10]. When the matrix AWD~ has not a
vertical-horizontal structure +this condition most
often is not fulfilled [17]. In order to obtain such
strgcture if it is possible, we can rotate the matrix
AWD™, make the SVD and rotate the compressed matrix

back [17]. This technique enlarges the possibilities
of the efficient SVD application to a larger class of
signals.

4. PROCESSING OF THE SIGNAL IN THE MIXED
TIME-FREQUENCY DOMAIN

Computing the  WVD, performing the SVD
compression of the WV-spectrum and synthesizing the
signal from the modified spectrum is an example of the
so-called time-frequency signal processing in which
operations performed in the TF domain are crucial
[12-14]. Illustrations of this type of processing can
be found in [16]1[17].

Among other things the proposed processing
technique can be used for noise filtering. Table 1
illustrates a short performance comparison of the SVD
method with other noise filtering methods: bandpass
filtering (BPF), use of the smoothed AWD (1)(2) and
synthesis of the sgignal directly from the smoothed
spectrum  (SMOOTH) [13], multiplication of the
WV-spectrum by a mask matrix with elements equal to
zero or one, and synthesis of the signal from the
modified spectrum (MASK) ({14]. SNR coefficient is
computed in the way defined in [13]. The SVD method is
applied without the additional rotation of the TF
matrix. The comparison is made for three different
input signals: sinusoid (SINUS), sinusoid with
Gaussian time envelope (SINUS+GAUSS), chirp signal
with Gaussian time envelope (CHIRP+GAUSS).

5. CONCLUSIONS

The Jjoint application of two high resolution
tools: the Wigner-Ville distribution (WVD) and the
singular value decomposition (SVD) in the
time-frequency (TF) scheme of signal processing can
give very good results only when TF matrix of signal
spectrum have vertical-horizontal structure. Rotation
of TF matrix before the SVD is suggested, provided
that it can result in such structure.

Comparison of different signal processing
methods has been made and it has turned out that in
the case of noise filtering the proposed technique is
the most efficient one in the case when the signal
spectrum has a required vertical-horizontal form.

Generally it is impossible to reduce or
eliminate the cross~terms from the WV-spectrum by
means of the SVD.
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Table 1
SNR [dB1]
out
SNRin :
[dB] BPF SMOOTH MASK SVD
SINUS 2.6 33.1 34.2 40.7 37.3
SINUS+GAUSS| 2.6 25.2 27.6 28.9 39.0
CHIRP+GAUSS 2.6 16.2 17.8 19.5 16.0
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