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RESUME

Cet article analyse les performances des détecteurs quadratiques en rélation aux courbes caracteristiques de
travail, lorsque le signal et le bruit sont des processus aléatoires Gaussiens.
Les résultats théoriques, valids pour un récepteur optimale, sont étendus et appliqués ou cas de filtres MTI

pratiquement utilisés.

Une méthode pour 1’évaluation et le projet des récepteurs est fournie.

SUMMARY

The paper analyses the performance of Square Law Detectors in terms of Receiver Operating Characteristics,
when both the signal and the noise are Gaussian stochastic processes.
The theoretical results valid for the optimum receiver are extended and applied to the case of some commonly

used MTI filter.

An evaluation and design methodology is outlined.

1 Introduction

The problem of evaluating the performance of the
square law receiver (SLD) in coloured Gaussian noise
has been extensively studied in the radar literature
in the case of deterministic signals with unknown pa-
rameters. The paper analyses and provides exact an-
alytical means to evaluate the operating character-
istcs of the SLD when both the signal and the noise
are Gaussian stochastic processes originated from fre-
quency spread targets; this can be the case of pro-
peller aircraft or helicopter detection in clutter or of
the discrimination between two clutter-like objects
by meteorological radars.

The SLD is assumed to process M pulses accord-
ing to a batch processing scheme whilst the sampling
time can also vary from pulse to pulse. The basic the-
ory of detection of Gaussian in Gaussian signals has
been developed in classical works such as in Middle-

ton [1] or in Van Trees [2]; they have demonstrated
that in this case the SLD is the optimum receiver.
The analytical study of the optimum SLD perfor-
mance has been investigated by Kanter [3] for a de-
terministic signal (Swerling models) and by Dillars
and Rickard [4].

The extension to the non-Gaussian case has been
recently presented in [6] under the condition of finite
fourth order moments.

The paper applies and extends the theoretical re-
sults valid for the optimum SLD to the general case
of an SLD having any assigned linear filter, including
the most widely used MTI schemes. Any given M-
dimensional hermitian matrix can be used to model
the clutter and the signals; the SLD operating char-
acteristics are derived in closed form by performing
an eigenvalue analysis. On the basis of this mathe-
matical model, it is possible to define an evaluation
and design methodology for the SLD class under dif-
ferent and composite models of the clutter and of the
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target signals.

2 Detection of Gaussian signals in
coloured noise

The frequency-spread target is modelled as a com-

plex M-dimensional stochastic vector seC™ repre-

sentative of a zero-mean circularly complex Gaussian
process s(t), whose covariance matrix is:

S = E{sst} (1)

where E denotes expectation and * transpose conju-
gate. An additive clutter plus thermal noise pro-
cess is similarly represented by a zero-mean M-
dimensional circularly complex vector ceC™ with co-
variance matrix:

C = E {cc*} (2)

Being the clutter and the signal independent, the ob-
served signal vector reC™: r = s+ ¢ has the follow-
ing covariance matrix:

R=E{rr*}=C+S8 (3)
Two hypotheses are considered by the SLD:

Hy: r=c i.e. signal absent
H;: r=c+s8 \ie. signal present

(4)

The SLD computes the filtered vector v = Hr and
integrates the samples by a dot product operation:

z = E{vtv} o (5)

From [2], the characteristic function F,(£) associated
with the complex quadratic form 2 is

M
F(O=J[a+2x9" (6)
t=1

where); are the eigenvalues of the hermitian matrix
K =HRH" (7)

The pdf f(z) is obtained through an inverse trans-
form of F; the corresponding probability distribution
can be obtained as:

Pr{z>y}= / " f@)a (8)

where~ is the threshold of the detector. After some
algebraic manipulations and when K has simple

eigenvalues, it is possible to demonstrate that the
SLD operating characteristics take the form:

Prlz > 4] =M, ajexp (—12:/(7) o)
s
ai = [T ss ;\J—_‘TTi

where J; are the eigenvalues of K. When the eigen-
values are corresponding to the Hy hypothesis eq.(9)
gives the false alarm probability Pjy.,while if the
eiegenvalues are corresponding to the Hy hypothe-
sis eq.(9) gives the detection probability Pj.

It can be shown that equation (9) can be extended
to the case when the eigenvalues of K have multipli-
city greater than one. In fact the general expression
for the SLD takes the form:

Pr(z > 4] = [det(K)]~1-
by = A"1

(10)
where I denotes the gamma function, y; is the multi-
plicity of the eigenvalue of order [, rj; is the residual
of order lk. In [1] it has been demonstrated that the
filter matrix H,p: which optimises the SLD perfor-
mance for assigned clutter and signal models is such
that:

H' ,H,;=C!-(C+8)! (11)

opt

3 Parametric description of sig-
nals and clutter

The target and the signal are assumed to be modelled
as wide sense stationary Gaussian processes with
zero-mean and autocorrelation function r(¢). In prin-
ciple any r(t) can be adopted; a widely used model
both for the signal and the clutter is the Gaussian
shaped acf model:

r(t) = r(O)ea:p{—2(7rat)2}‘ea:p{—j27rft} (12)

where r(0) is the process power, o is the spreading
parameter and f is the Doppler frequency.

The M-dimensional covariance matrix C can be
obtained by sampling the corresponding continuous
process. If uncorrelated processes are assumed, dif-
ferent covariance matrices can be added to obtain
a composite clutter matrix C; additional receiver
noises (e.g. A/D converters, round-off errors) can
be included in this way. The K-th time-around clut-
ter effect can be taken into account by putting to
zero the first k rows and columns of the covariance
matrix.




4 MTI filters

In this paragraph it is shown how some well known
MTI filters can be evaluated according to the above
described detection model. To each casual discrete-
time stationary linear filter, having an impulse re-
sponse [h(k);k > 0] it can be associated an M-
dimensional square Toeplitz matrix H which trans-
forms the first M samples of the input sequence into
an output vector:

-n_J 0 1<i<i<M
H(”’)_{h(i~1) 1<i<icm 13

Equation (13) can be used to model both FIR and IIR
classical MTI filters; for example the Double Delay
Line Canceler (DDLC) can be modeled as:
{ R(0)=1; R(1) = —-2; A(2) =1 (14)
h(k) = 0 otherwise
Non stationary filters can be used as well; they are
useful for instance to compensate for the multiple
time-around clutter effects. When the weighted MTI
filtering in the DFT domain is adopted (WDFT), a
bank of detectors is obtained; the k-th filter of the
bank can be expressed as:

H(k) = diag(hl,hz, von ,hl)

b = w(l)ezp|—j(2n )]
1<I<M

(15)

where w(.) denotes the weighting window coefficient.
A possible adaptive MTI scheme makes use of a clut-
ter whitening filter whose coefficents are estimated
in real-time on the basis of the data available from
the surrounding range-azimuth cells. In our model
an Ideal Clutter Whitening Filter (ICWF) of order
p (k < M) is defined as the autoregressive filter re-
lated to the clutter covariance matrix when only the
first p rows and columns are considered; in essence
the ICWF filter is obtained as

h(k) = { (c)zp(k+ 1,1)

where Q,(.,.) is the p-dimensional inverse of the re-
duced clutter covariance matrix K. For Gaussian
acf the expression of the AR samples are available
in closed form [5]. More complex receiver structures
con be built by combining different kinds of filters
in cascade or in parallel. As an example, the classi-
cal Moving Target Detector described in [7] can be
obtained by combining the DDLC and the WDFT
blocks described above. Another interesting exam-
ple is obtained when the DDLC is substituted by the
ICWF.

0<k<p
p<k<M

(16)

5

Numerical results

The diagrams of Fig.1,3 and 4 are related to the fol-
lowing numerical case:

Signal to Clutter Ratio = 10 dB,
Clutter sI.)reading = 625 Hz,

Signal spreading = 1250 Hz,

Signal Doppler frequency = 1875 Hz,
PRF = 5 Khz,

Number of pulses = 8;

while the diagram of Fig.2 are the same with the
exception of:

Clutter spreading = 20 Hz,
Signal spreading = 100 Hz,

Doppler frequency = 1500 Hz
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Figure 3a: Py versus threshold v for a DDLC fol-
by o Hamming weighted DFT for
log Ps, = —0.21714.The topmost curve refers to the

lowed

-0
—
e}
o
o3

optimum filter

=1

N
o

7
2 log Pfa
Q T T 3 T T 1
-10,00 -8,00 -6,00 -4,00 -2,00 0,00

Figure 1: Receiver Operating Curves
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Figure 2:  Probability of detection wversus the
number of integrated pulses for a DDLC recetver
'(Pra =107°%)
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Figure 3b: P, versus threshold v for a IWCF fol-
lowed by a Hamming weighted DFT for
log Py, = —0.2171~.The topmost curve refers to the
best output.
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Figure 4: Eigenvalues spectra for the two hypoteses Hy and Hj.




