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RESUME

Dans cet article on traite le probléeme d'éstimation des fréguences des
sinusoides dans le cas ou la structure du modéle n'est pas connue a priort.
Deux algorithmes sont proposés pour Uéstimation simultanée de la fréquence et
de Uordre du modéle. Le premier, applicable “off-line”, est basé sur la
métode des moindres carrés genéralisée, tendis que le second est recursif,
basé sur la méthode RML. Dans les deux cas on suppose que le modele est dans
la forme des “notch” filtres en cascades. L’éstimation de Vordre est basé sur
les tests directs de la puissance des signaux résudus. Les résultats de
Vanalyse experimentale donnent une illustration des qualités des méthodexs
proposées, qui représentent un outil simple, mats efficace, pour les
applications pratigues.

SUMMARY

In this paper the problem of estimating freqguencies of noisy sinusoids
when the exact model structure is not a priort known is considered. Two
algorithms are proposed for simultaneous freguency and model order estimation.
The first one, applicable off-line, is based on the generalized tleast-squares
method, while the second one is recursive, based on the RML method. The signal
model is supposed to be in the cascaded notch form. Order estimation is based
on direct residual power tests. Experimental results illustrate the
characteristic properties of the methods which represent simple and reliable
tools for practice.

1. INTRODUCTION for amplitude estimation and the
corresponding detection. Recently, recursive

Estimation of frequencies of noisy methods of the maximum likelihood type have
sinusoids has attracted a great deal of been proposed for the signal models in the
attention of researchers from the field of cascaded form consisting of second order

signal processing. Numerous methods have been notch blocks, so that the unknown frequencies

proposed starting from the general concepts are estimated directly one by one, without
developed within system identification [1-41 requiring polynomial rooting, [10-121
Some of these methods are applicable off-line Estimation of the number of sinusoids is done
f{1-51, while in some  applications it is again by attaching an amplitude estimation
desirable to generate the estimates algorithm to each block in the cascade, [101

recursively [6-91. The algorithms have mostly
been constructed and verified starting from
the supposition that the number of sinusoids
i a priori known A strategy based on the
introduction of an additional recursive
algorithm for amplitude and phase estimation
has been introduced to deal with
composed of an 1 own number noisy
sinusoids, 4,81 This procedure requires,
however, finding the roots of high-order
polynomials, together with an extra effort
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signals

The problem of estimating frequencies of
noisy sinusoids in the case when their number
is not a priori known is addressed in this
paper. It is assumed that the signal model is
in the cascaded form of second order notch

blocks with symmetric structure and
contracted poles. First an off-line algorithm
of the generalized least =quares type Iis
discussed. It is demonstrated that. the

sequential estimation of the frequencies C(one
by one) approaches the efficiency attained in
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the case when the model order is exactly
known [3l. The experimental results also show
that the number of sinusoids can be estimated
efficiently using simple tests of residuals
at. the output of the notch blocks. In the
second part a recursive algorithm derived
from the same model is constructed, by using
the methodology of [8]l. It is shown that the
algorithm provides an efficient. tool for both
reduced order estimation of harmonic signals
and estimation of the number of sinusocoids in
a recursive way, by performing simple
residual tests {without requiring any
additional amplitude and phase estimation).

2. PROBLEM FORMULATION AND ESTIMATION
ALGORITHMS
Ve shall consider the problem of’
estimating frequencies of n sinusocoidal
components in the signal
12}
ylto=§ ALsin(witﬁs_ HedtD ad
. L
i=4
where [{gdtd} is a =zero mean white noise
process. Frequency estimation algorithms
constructed on the basis of system

identification methods are usually related to
the dynamic model
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wher A d=qg + + > =
e q a +a q a, 4 ozJ azh_j,
3=0,1,..,n N ao=1, [1,3]. As Ad(Z> has its
zeros on the unit circle, we shall introduce

the pole contraction factor o and assume that
the signal mogel for idgint,ification purposes
is Adq ')y(t,)=;‘\1(oeq dedt.>, 0<ax=1.
Factorization of Adq > and A(aq—i) leads to
the following approximate model of 1>
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where

block;

::\L~'=2c:c>sm_L and & can vary from block to
Hea™  dmt, order

in the

.ond are second

notch filters for the n frequencies
signal y<{t>. Model (3> has been used as a
starting point for constructing adaptive
notch filters in cascaded form in [10-121

2.1. Off line algorithm

An off line algorithm for
unknown frequencies wi,...,w
hal

egtimating
on the basis of
Y:=[ y<1>..y <D be

3> by using the
(GLS> methodology
algorithm consists of

N signal

directly derived from
generalized least-squares
proposed in [31. The
the following steps:

1. Let i=1;

samples can

2. Assume the second order model H. (qmi)
and get the estimate (:)‘; by using theL GLS
algorithm of [3];

3. Filter data through H_ch"x

4. Terminate if

all frequencies are

estimated; otherwise increase i by one,

replace the original data by the
filtered data and go to step 2.

The GLS algorithm applied in step 2. is

described in detail in
methods described

[31;
in [4,51,

it resembles the
but it is better

adapted to the model structure in <3). It
consists essentially of an iterative
application of the LS algorithm to data

obtained by filtering measurements through

1/A(oxiq_1), where the contraction factor o
v

{31, The step 4.
a detection procedure,
indicating the presence of sinusoids in the
signal obtained after multiple filtering. The
structure of (32> indicates that simple tests
of decrease in the filtered =ignal power
(during the successive passes through steps
2. to 40 can lead to a reliable estimate of
the number of sinusocids. This approach is
straightforward in the case of =inusoids with
nearly egqaual powers, but the situation may
be =somewhat different. if weak sinusoidal
components exist in the signal along with the
strong ones. Then the rejection of the strong

can be made data adaptive
contains, essentially,

sinusoids, performed by the leading sections
of the described algorithm, may be
insufficient.. Weak sinusoidal signals can be

detected by
blocks and continuing the procedure

increasing the number of notch
in order

to find frequencies differing from the
preceding ones. The algorithm is applied
until a treshold of the decrease in the

is reached and
sensitivity to

it depends on
weak  harmonic

residual power
the required
signals.

2.2. Recursive algorithm

A recursive algorithm for estimating
parameters in the cascade (3> consists of a
set of recursions, each estimating one of the
unknown frequencies, i.e. a single parameter
2 in (3). Each recursion has the form of the

adaptive minimal parameter notch filter
proposed in [8], which represents a version
of the recursive maximum likelihood (RMLD
algorithm adapt.ed to t.he specific model
structure. According to the idea presented in
81 the first block utilizes the row

measurement. data, while the data sets for all
other notch blocks consist of residual <a
posteriori prediction error sequencies
coming out. from the preceding notch block.
For example, the second section is fed by

51<t>=u1<q"‘,t Sydid

where H1(q_1,t.) represents a time varying

filter obtained by the

parameter estimates

using corresponding

1+ai(t>q“+q“

H1(q o= -1, 2z -2
1+41(t)a1q +cx1q
The crucial theoretical problem is to
demonstrate that the reduced order model of a
specific structure, which represents one
block in the cascade (3>, can pick up
successfully one of the frequencies when
applied to raw data. The analysis of the
extrema of the corresponding criterion
function shows that if the algorithm
converges it will converge to one of the

existing unknown frequencies. However, it is
difficult to derive conditions for the global
convergence. The undertaken simulation
studies show that the algorithm behaves very
well in practice provided a good care is
taken of the relevant parameters in the
algorithm influencing convergence properties.
The first among these parameters is the
contraction <or debiasing, mnotch) parameter
ai in (3>, which is taken to be time varying

and genereted recursively by

a (L)=a, o L~DD+1-a, D, D
i o i io if

represent the initial and
of oti(t),

where o 0> and o
i if

the final values respectively,




while & defines the rate of change in

oz';(t.>. The
notch filter bandwidths,

initial low values enlarge the

while the high final

values <(close to 1> sharpen the frequency
responses and enable both debiasing and
preparation of data for the subsequent

recursions. The second important parameter is
the forgetting factor in the algorithm I[8],
which is also taken to be time varying and
generated recursively by

= —-1>+(1—-
pL(t> piop_t(t, 10+t p,u))pi.f ao

where p (02 and e, are the initial and final
L

values of p,L(tJ, respectively, and e
determines the rate of change in p((t). The
experimental results presented in the next
paragraph will show that  with O(L(O) low
enough, S close to 1, pt(t) decreasing with
t and ‘D‘Lf=1 it is possible to obtain good

convergence properties even in the case of a
large number of sinusocids and low SNR’s.
Frequency estimation methodology, based
on the signal model in the cascaded form, is
particularly convenient for the recursive
estimation of the number of sinusoids present
in the signal. The main advantage here is the
decoupling effect of the estimation blocks
allowing for =imple power testing at the
notch outputs, which can directly be related
to the magnitude of the removed sinusoid.
Thus the polynomial factorization required in
81 is avoided, as well as the additional LS
amplitude estimation suggested in ([i31. The
proposition of this paper is to introduce a
sufficiently large number of cascades, wmdn,
and to recursively estimate the powers of the

original signal and all the residuals <(for
i=0,...,m; Eocwzy(t,)) by
p.CtI=p Cb-1>+ — (2 t>%-p Ct~15)
i i L—to 1 i
for t'>'t'o <62

where t’o is an initial time required for the

algorithm to stick to’ the line components in
the signal spectrum. A decrease from pL~1<t’>

to pi(t) serves as an indication whether the

corresponding section provides a frequency

estimate of a truely existing sinusoid or
not. If the ratio rL(tJ between pi“(t.) and
pt—1(t'> falls below a predefined treshold,
the decision is made that the frequency

estimate does not correspond to a sinusoid.
The number of blocks for which r,__(t.) exceeds

the given treshold represents an estimate of
the number of sinusocids at the instant t.

3. EXPERIMENTAL STUDY

Properties of the off-line algorithm are
examined both on long and short data
sequencies; in the first case asympt.otic
properties can be seen, while in the second
case the practical efficiency can be tested.
The =signal is composed of two sinusocids with
frequencies m1=0.4r( and w2=0.6n in white

noise with partial SNR’s of 0 dB. The Monte
Carlo simulation results (xrms of the
frequency estimation error) are presented in
Table 1 for the data length N=1000, and in
Table 2 for N=50. The algorithm based on the
reduced order model cascaded sections and the
sequential removal of the sinuscids from the
signal 1> is only slghtly inferior to the
GLS algorithm applied to the model (2>
incorporating both sinusoids (columns 1 and 4

vs. columns 2 and 5> Columns 3 and 6
describe the estimates in the case when only
single sinusoids are present in the measured

signal. The number of sinusoids has been
assumed known.
w =0 .47 w =06
1 2
n=2 n=1 n=2 n=1
model (3)model (2) model (3 model (2!
. 000036 | . 000034 000035} .000025 | . 000026 [000025
Table 1
w =0 .4n o _=0.61
F? 2
n=2 n=1 n=2 n=1
model 3 model 2; model (3| model ‘2’
.011945 | .004128 (003749 | . 008612 | . 002845 002549
Table 2
Table 3 presents typical results

illustrating the
in detecting the

efficiency of the algorithm
number of sinuscids. Two

equal power sinusocids of frequencies o.\1=0.4n
and 0)2=0.6rz are present. in the wignal. The
decrease in the residual
iy p, W, power is considerable from
111018 300053 the first to the second row
and from the mecond one to
2 750 .599999 .
the third one. In the
3| 297 .399799

- subsequent passes through
|4 2771899976 |\ eps 2-4 of th lgorithm
51 256 .401448 t,hep same t‘r'eqienca:iié are
6] 251].599023 repetedly discovered, but
Table 3 the correspomﬁllng power
decrease is not

substant ial.
Table 4 presents typical results

illustrating the efficiency of the algorithm
in detecting the number of sinuscids when
their amplitudes differ significantly, namely
by the factor of 10. The partial SNR for the

weaker sinusoid is -3 dB. It appears that
less cascades are needed to detect. both
sinuscids in the case when . is somwwhat
lower. This is due to the transient notch
filter response, the duration of which
increases with increasing o The example
illustrates the fact. that. o should be
carefully chosen with respect to the
available data length.
o =0.99 o =0.977
if if
i A il p w
P i i i i
1{ 720/ .400001 1| 7201 .400001
21 197] .399996 2| 163].400192
3! 163} .400237 3| 145|.404114
4! 155 .396935 4| 141 .599602
5] 149 .406536 5{ 125|.390981
61 144|.410411 61 1211.410626
71 143 .599903 71 120].376663
126 120
Table 4
Properties of the recursive algorithm

described in section 2.2 can be seen from an

example in which the =ignal is composed of
three sinusoids (w1=0.3811, m2=0.4n » f.oa=0.61z >
and white additive noise (partial SNR’s are

cascaded model used in
five notch blocks.

-5 dB>, and the
identification consists of

The frequency estimates obtained in the
blocks ddabel 1 corresponds to the first
block, etc) are represented in Figure 1.

Obviously, curves 1-3 give accurate estimates

of @, o and @, Estimates of the power of

residuals obtained by (6> are represented in
Figure 2 d{curve 0 gives the signal power,
curve 1 the residual power at the first
block, etc.). The curves 3, 4 and § coincide
indicating in an obvious way that three
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sinusoids are present in the signal.

Figure 3 gives an illustration of the
capabilities of the proposed recursive method
in estimating time varying frequencies. The
t.rue frequencies are varying linearly in
time, starting from 037, 0357 and 047 and
ending at 05n, 055n and 0.6, respectively,
with partial SNR’s of O dB.

4. CONCLUSION

In this paper the algorithms for
simultaneous estimation of both frequencies
of noisy sinusoids and their number
are proposed starting from the generalized

least~squares method, and assuming the signal
model structure in the cascaded notch form.
Experimental results show that both methods

are very efficient even in the case of a
large numbBer of sinusoids with unequal
powers. Further efforts have to be more

oriented towards theoretical justification of

the approach.
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Fig. 1. Frequency estimates (w1;0.38rL
w2=0.41T and w3=0.6ﬁ, SNR’s=-5dB)
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Fig. 2. Residual power estimates
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Fig. 3. Chirp frequency tracking




