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RESUME

La qualité de ’estimation du retard par la Fonction Moyenne des Différences Absolues (AMDF) est presque égal
a celle fournie par la méthode & inter-corrélation, avec une structure computationelle plus simple. Souvent on
ne tient pas suffisamment compte des problémes du débit d’échantillonage nécessaire pour obtenir ’estimation
AMDF. .

Dans cet article on traite le probléme d’interpolation, et on donne une expression simple de la variance finale
d’estimation. On fournit aussi la variance du retard estimé par la méthode & inter-corrélation dans les mémes
conditions.

SUMMARY

It is known that the accuracy of the Average Magnitude Difference Function (AMDF) based time delay estimate
approaches the one of the classical cross-correlation-based estimate with a lower computational effort. However,
some of aspects concerning the sampling rate necessary to search the extremum of the AMDF are often negliged.

In this work, the interpolation problems are addressed and the theoretical values of the variance of the
estimate are given for a reference case. For comparison purposes, the theoretical accuracy is also given under
the same conditions for the cross-correlation based (Direct) estimate.

analysis. An euristic discussion of the performance
of the AMDF in such applications was reported in
[3]. However, no special mention is made in the re-
ferred works to the sampling requirements related to
the use of the AMDF. In this contribution, we con-
sider in detail the sampling and interpolation proce-
dures for reaching the minimum of the AMDF, the
abscissa of which is the searched delay time. Then,
we give explicit theoretical values of the variance of
the AMDF estimate, and compare them to the Rao-
Cramer bounds. A check of these results is provided
by Montecarlo trials.

1 Introduction

A special attention is currently devoted to-the time
of delay estimation (TDE) techniques. One of the
most typical application is the direction of arrival
and range estimation in multisensor arrays. Of-
ten, operative conditions require both accurate and
computationally simple algorythms. Optimum TDE
consist in cross-correlating signals after a suitable
pre-filtering. An excellent review of these tech-
niques along with a discussion about the Rao-Cramer
bounds is given in [1].

Recently, an empirical comparison of the cross-
correlation TDE estimates with sum-based algory-
thms has been performed [2]. It has been ob-
served that the so-called Average Magnitude Differ-
ence Function (AMDF) yields very good performance
while requiring only sums. As a matter of fact, the
AMDF is employed for pitch measurements in speech

2 The TDE problem

We refer to a scheme where a signal s(t) and its de-
layed version s(t— D) are received by a pair of sensors,
which outputs are respectively

z1(t) = s(t)+ni(t) (1)
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z2(t) = s(t— D)+ na(t)

The signal njy(t) and ny(t) represent independent
Gaussian and white measurements noises.

The TDE problem consists in estimating the pa-
rameter D from the pair of the measured signals. Us-
ing the classical Direct Correlator (DC) we search the
time 7 which maximizes the sample cross-correlation
product

N
Roc(r) = % S (()e(kT +1)  (2)
k=1

where T is the sampling interval, and NT is the es-
timation window. Ideally, the maximum occurs for
T = D. In practice we have 7 = Dpc # D,

Estimation errors may be caused not only by the
measurement noise, but also by the finite extension
of the window, NT.

In principle, the TDE procedure entails the evalu-

ation of Rpc(r) for an infinite number of points. In
practice, z3(t) is sampled every T seconds, so that
 can assume only the values nT (n integer). When
the time 7" is comparable with the desired resolution,
it is sufficient to find the value n,, of n correspond-
ing to the maximum cross-correlation, and no further
action is required. Very often this is not the case,
and an interpolation is necessary to perform the de-
sired TDE estimate. Assuming that the signal z;(t)
is band-limited into the range :1:717;, z2(t+7) can be
calculated using either zero padding or linear phase
addition with the FFT technique.
A more simple technique consists in interpolating
Rpc(r) from its samples because it is band-limited
in the same range as z3(t). FFT-based techniques
can be employed as well. However, let us observe
that Bpc (7) presents the special feature of having a
pronounced main lobe around 7 = D with an (ide-
ally) symmetric shape. Due to the finite bandwidth,
it can be expressed in Taylor series around D, and
approximated up to the second order by a convex
parabola.

Rpo(r) =art+br+¢ (3)

This approximation is reasonable if the time r is
small enough with respect to the widht of the main
lobe.

Using the approximation (3), the TDE procedure
can be divided in two steps:

e Location of the absolute maximum sam-
ple IA?DC(an) and estimation of two sam-
ples within the main lobe, fiDc(an + 4),
Rp¢ (an - 9);

e Evaluation of the apex of the parabolic model as
final TDE

a b g
DDC = -—5; s —5- (4)
Rpc(an + 9) - épc(an - 0)

Rpo(an + 9) - 2RD0(an) + RDC(an - 9)

The samples at n,, T + § are directly available if
@ = T (in this case an oversampling factor > 2 with
respect to the Nyquist rate is required).

Otherwise, they can be calculated by means of an
ideal interpolation either in the r domain or using
the FFT.

»The accuracy of this estimate can be measured by
calculating its variance

var {D} = £{ (b~ D)’} ©

In our context we assume that the SNR is sufficiently
high so that the probability of finding a false absolute
maximum into sidelobes is negligible. '

The general expression of the variance in this case
is omitted here for the sake of compactness, and is
reported in [5].

Here let us consider the particular case when the
pairs of samples employed in the estimate of the
cross-correlation (2) are reciprocally uncorrelated.
This occurs when T is very large with respect to the
duration the acf of s(t), but also corresponds to the
particular case of white signal embedded in white
noises and very small 4.

In this case we obtain, for Gaussian signals

, 1 3
Var{Dpc} = (1 +2SNR

- 6
N 472 B? SNR? +l> (6)

where SNR is the signal to noise ratio, assumed equal
for both the channels, and B is the half bandwidth
of the signals.

It is interesting to compare this value with the Rao-
Cramer bound for flat spectrum given in [1].

1 3 <1+2SNR)

hors = N 7757\ SNEE @

It is evident that the Direct accuracy of the cross-
correlation technique does not increase without lim-
its when the measurements noise vanishes, and does
not approach the behavior of a Maximum Likelyhood
estimator.

In fig.1 the variance of the Direct estimator and of
the RCL bound versus SNR is reported in logaryth-
mic scales, along with some simulation results (3000
runs).



3 The AMDEF estimate

The Average Magnitﬁde Difference Function is de-
fined as

N
Bav(r) = IR CERIINC

The AMDF TDE technique consists in searching the
time D 4ps for which the AMDF attains its minimum.
The main advantage of this method consist in the use
of additions only. On the other hand, the methods
for interpolating the cross-correlation does not longer
apply to the AMDF, because this is not band limited.
In particular, for Gaussian processes, we have

B{Raelr)} = ©
2 \RIRO) ~ Bur — D)+ 5, + 7,

where R,(r) is the acf of the signal and 02 , 63, are

the variances for the noise. The shape of the AMDF
fits a concave hyperbola around 7 = D, which cannot
be interpolated using the sinc function or a parabola,
unless high sampling rate is employed.

However this fact suggests to square the AMDF in
order to locate its minimum with a parabolic interpo-
lation. Thus we may devise to employ the following
TDE estimate, for Gaussian processes

n 0
DAM = —'2—- (10)
Rp(nmT +6) = B pr(nmT — 6)

Ripr(nmT +6) — 2R% 0 (nmT) + Rhpr (nmT — 0)

where n,,T is the position of the absolute smallest
sampled AMDF value and the times n,T % 8 are
supposed to lie into the main lobe.

Let us consider the accuracy of this estimate. Pro-
ceeding as in the case of the Direct estimate, we can
calculate the approximate variance of the AMDF es-
timate by assuming that the probability of ambigous
peak detection is negligible.

Expanding in series equation (10) around the time
delay D and retaining terms up to the second order
we calculate both the bias and the variance. For this
purpose, the moments of the AMDF given in [4] are
employed.

The details and the general results of this analysis
are reported in [5]. For the particular case of white
signals in white noises and very small values of § we
have, for Gaussian processes

71 3 2+2SNR (1)
2 N 472B? SNR?

Var{Dan} =

Apart from the factor _12r_, the main difference with the
Direct estimate is the fact that the variance tends to
zero for increasing SNR. This is visible in fig.2 where
(10) is plotted versus SNR along with simulation re-
sults (3000 runs).

These curves justify the empirical data reported in
[2].

On the same diagram, the variance of the Average
Square Difference Function (ASDF) is reported for
comparison.

The ASDF is defined as

N
Ras(r) = % 2 (kD) — mBT + 1) (12)
k=1
The ASDF TDE consists in searching the value of 7
for which the absolute minimum occurs. The ASDF
requires computation of squares and sums. It is com-
putationally more simple then the Direct estimate.
Moreover it is, almost approximately, band limited
and can be interpolated using the same methods em-
ployed for the cross-correlation. Thus, we consider
the estimate

A @
Dys = —3 (13)
RAS(an + 9) - RAS (‘an - 0)
RAS(an =+ 9) —2R4s (an) + RAS(an - 0)

with the same assumption made for the AMDF esti-
mate.

Evaluation of the variance of this estimate for
Gaussian white signals in white noises for very small
0 gives

l 3 24+ 2SNR
N 47*B?* SNR?
This is a scaled value of the variance of the AMDF

estimate which approaches an efficient behavior for
high SNR. This is visible in fig.2.

Var{Dss} =

(14)

4 Conclusion

The AMDF technique for estimating the time of de-
lay between two signals is a very efficient one because
it requires only sums and exhibit high accuracy. We
have shown that it can be implemented at the same
low sampling rate as the cross-correlation estimate,
using an appropriate non-linear interpolation, with-
out degrading its performance.
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