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RESUME

L’utilisation de la distribution de Wigner~Ville
{DWV) pour 1’analyse temps-fréquence des signaux non
-stationnaires présente, en comparaison avec d’autres
méthodes, plusieurs avantages, mais en méme temps elle
possede un inconvénient essentiel: génération des
éléments interférentiels entre de différentes
composantes du signal, Trés souvent ce défaut rend
difficile 1’interprétation du spectre. L’objectif de
1’article est la mise en évidence du fait que cet
inconvénient essentiel de la DWV est trés avantageux
du point de rue dela détection des signaux.

L’article rappele briévement le méchanisme de la
génération des interferences réciproques dans la DWV,
il recapitule la formule temps-fréquence de la
détection optimale & 1'’aide de DWV et propose 1'idée
de la nouvelle méthode de détection qui exploite
drectement des interferences en DWV. Dans la méthode
proposée le signal de test est additionn® au signal
analisé et on compte le spectre réciproque entre le
signal de test et le gignal d’entrée modifié. Parceque
les interferences sont toujours symétriques dans
1l’espace temps-fréquence entre les objects qui les
#énérent, si 1l’on comnait la localisation temps
~-frégquence du signal de test et de toutes ses

interferences avec des composantes non-connues du
signal analisé, on peut trouver les principes temps
-fréquence de la modulation de ces composantes, en
appliquant de simples régles géometriques.

En comparaison avec des méthodes standard,
1'idée proposée réalise la détection des composantes
du signal de la mani®re "indirecte". Dans l’article
cette méthode est decrite avec plus de détails et on
présente des examples experimentoux de son
application.

La méthode est 1la plus
verification adjointe de 1’hypothése.

utile dans la

SUMMARY

Using the Wigner-Ville distribution (WVD) for
general purpose time-frequency (TF) analysis of
nonstationary signals has a lot of advantages over the
other methods but has also one very important
drawback: generation of cross-terms between different
signal components which makes the interpretation of
the spectrum difficult in many cases. A goal of this
paper is to emphasize the fact that the main wealmess
of the WVD is profitable in detection applications.

The paper briefly reviews the
generation mechanism of the WVD, recapitulates the TF
formulation of optimum detection by means of the WVD
and puts forward an idea of new detection scheme that
directly take advantage of the cross-terms generation
in the WVD, In the proposed method a test signal is
added to the analyzed one and a cross WV-spectrum
between the test and -the modified input signal is
computed. Since the cross-terms always lies
symmetrically in the mixed TF plane between objects
whih generate them, knowing the TF localization of the
test signal and its interferences with all unknown
components of analyzed signal we can find TF

1. INTRODUCTION

The Wigner-Ville distribution (WVD) has been
established recently as one of the basic tools in
time-varying signal analysis and signal processing
[1-3]. It is due to its many advantages over the other
mixed time-frequency signal representations (MIFRs)
from the class of Cohen. But because of its
bilinearity the WVD possesses one feature which is

cross~terms

mixed time-frequency signal representations (MIFRs)
modulation laws of these components using simple
geometrical rules.

In comparison with standard techniques the
presented idea realizes the detection of signal
components in indirect way. In the paper the method is
described in a more detailed way and initial
experimental examples of its using are given.

The proposed method can be especially useful for
additional verification of hypothesis.

rather unpleasant for a common user: generation of the
so-called cross-terms {4-7]. They make interpretation
of the WV-gspectrum very difficult in many cases. The
goal of this paper is to show that the main weakness
of the WVD is profitable in detection applications.
The structure of the paper is as follows: in
gsection 2 the WVD is introduced and a short
description of the cross~terms generation is made, in
section 3 standard methods of the WVD using for
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detection are briefly reviewed and in section 4 a
presentation of the proposed indirect detection method
is made.

2. THE WIGNER-VILLE DISTRIBUTION
AND CROSS-TERMS GENERATION

The WVD is a pseudo power spectral density
function that describes a signal by the distribution
of its power density in the mixed time-frequency (TF)
plane. The auto WVD (AWD) of a signal x{(t) is defined
by the form {1,3]

+® .

AWDY(t,0)= J x(t+§)x*(t—£)e—JQTdT

e ]

(1)

and is a function of time and frequency. The cross WVD

(CWD) of two signals x(t) and y(t) is given by the
formula [1,3]
@ T X T —iOT
oY (,0)= S x(t+3)y (t-3)e™ " ar . (2)
s v3

As it can be seen the auto WV-transform (1) is not s
linear operation on signal. It can be interpreted as
the Fourier transform performed over va.riablte 7 on the

result of multiplication of the signal x(t+—2-) and its

reversed and conjugated form x*(t—%) [3]1. In this

situation a power spectral density function is
estimated and the multiplication is performed on the
signal before the Fourier transform on the contrary to
the spectrogram, another MIFR, where it is performed
after it on the already computed standard Fourier
spectrun. The consequences of this fact are tremendous
for the features of the WVD. i

The definition of the auto WV-spectrum (1) gives
a lot of advantages for the WVD in comparison with the
other MIFRs (a better and separable resolution in time
and frequency, concentration of signal power near the
instantaneous frequency for monocomponent signals,
etc.) but at the same time due to its bilinearity it
causes the generation of the so called cross-terms in
the resultant spectrum of the signal [4-7] which make
its interpretation cumbersome in many cases [9-11].

Let x(t) be a multicomponent signal

n
x(t):.z Si(t)'

i=1

(3)

Then the WVD of the signal x(t) is given by the

following formula [6]

x n s, nn 8185
AWD™(t,@)= } AWD ~(t,®)+ J, ), 2Re{CWD (t,0)}
izl i=1j=1
i>j (4)
It can be seen that the resultant auto spectrum of
x(t) is not simply equal to the sum of auto spectra of
si(t), i=1,.,n, but there also exist in it cross

spectra between its every two different components
si(t). These spectra are called cross-terms, they have

an oscillatory nature and no physical significance.

For the two component signal x(t):sl(t)+sz(t),
(4) is simplified to the form

81+82 S1 82
AWD (t,©)=AWD ~(t,0)+AWD “(t,0)+

1’

S 82
+2Re{CWD {t,0)} (5)

Separate computation of the cross-WVD of signals Sl(t)
and sz(t) with x(t) gives the following results

8,,8,+8 s 8.,8
o 1L 2(¢,0)=A0D L(t,0)+0HD 1 Z(t,0)  (6)

819,48 s 8,8
oD 2 1 2(t,0)=aWD 2(t,0)4cWD & lt,0)  (7)
It is obvious that
X 81+% 8g,%
AWD (t,®)=Re{CWD (t,©)+CWD (t,0)}. (8)

Fig.1 exemplifies the cross-terms mechanism of
the WVD. It visualizes cross WV-spectra (2) for
different signals (fig.a+d -time series x(t) and y(t),
fig.e+h -real parts of the CWDs, fig.i+1 - appropriate
imaginary parts of the CWDs). All the presented
spectra were computed for the analytic signals.

The origin of cross-terms is explained in detail
in [4-6] and methods for its reduction are discussed
in [7-11}.

3. STANDARD DETECTION METHODS USING THE WVD

The addressed detection problem is the following

} e

where the observed (complex) signal x(t) is known on
the time interval (T), w(t) is zero mean complex white
Gaussian noise (whose real and imaginary parts are
independent and of equal power spectral densities)
such that

[12]:

HO: x(t)=w(t)
Hy: x{t)=w{t)+s({t)

Elw(t)]=0; E[W(t)w*(u)]=N05 (t-u),

and s(t) is the (complex) nonstationary Gaussian
signal to be detected, and characterized by

Els(t)l=m(t); E[(s(t)—m(t))(s(u)—m(u))]:KS(t,u).
(E denotes the expectation operator and the star the
complex conjugation).
The optimum detector can be written as [12]
Hy

+ <7
A]'R]DH2>

a threshold and lR and J‘D will be defined

(9)

where 7 is

later.
When
the

s(t)=f(t) and f(t) is deterministic and

known, values ].R and lD in (9) are as follows

[12]:

1520,

o

nea s 1 reton™ (e 0aml (t,0)athe ,  (10)
- (T)
where A is a constant.
In the case s(t)z=bf(t), where f(t) is

deterministic and known and b is a zero-mean complex
Gaussian variable, we have [12]:

+® £ de
1=BJS AWD™ (£, )AWD" (t,0)dt3s, {11)
- (T) de

lD=0 .

where B ia a constant.

As it can be seen from (10){(11) the detection
procedures based on tPe WVD perform masking in the 'I‘g:
plane of the Re{CWD™''} (10) and AWD™ (11) by the AWD
of the reference f(t) and then cal%ulate its energy
contained in the "shadow" of the AWD . In the special
case of chirp signals this operation is simplified to
the line integration [13]. Wh%n the s(t) is present in
x(t}), spectra of the 11} and AWD® lying in the
"shadows" of the AWD  are tapproximately {(noise
component) equal to the AWD  and do not have
osgilatory cross-terms.




Figure 1 illustrates this situation. It presents
some cross WV-gpectra of two signals: rl(t) and

x(t):sl(t)+sz(t) where ri(t),si(t) are sinusoids with
Gaussian envelopes and rl(t) is a reference of Sl(t)'
When the reference signal rl(t) takes the same time
position as sl(t) in x(t), in the resultant cross

WV-spectrum it is received:
- in the real part of it the cross WVD of the signals
rl(t) and sl(t) (which is equal to the auto WVD of the

signal rl(t)=sl(t)) and a half {(as a value) of the
oscillatory cross-terms between rl(t) and sz(t) in

comparison with the auto WVD of x(t) (5)(6)(7)(8);

- only cross-terms, in the imaginary part, which take
the same place in the TF plane as the cross-terms i

the real part but they are shifted in phase about 90

in comparison with them.

When rl(t) does not coincide in time with the sl(t)

the both parts of the cross spectrum have entirely
oscillatory nature since in this case the cross WVD
between signals rl(t) and sl(t) can not be simplified

Hy the auto WWD of one of them.

The cross-terms generation plays a crucial role
in the "matching window" analysis technigue of Jones
and Parks [14].

Additional information concerning using the WVD
for detection can be found in [12-17].

4. INDIRECT DETECTION METHOD

Let add a test signal r{t) to the analyzed data
x(t) (3) and compute a cross WVD between r{t) and
441
\

r,s
T, X+r !

n .
o™ T (1,0)=aWD" (£,0)+ T 0D F(t,0)  (12)

i=1

As a result we receive in the real part of the
spectrum  (12) the auto WVD of r(t) and its
interferences with all unknown components of x(t) and
in the imaginary part we get only the interferences.
Because oscillatory cross-terms always emerge
symmetrically Tbetween every two components of
multicomponent signal and they are characterized by a
very regular geometrical pattern [6], when the test
signal and its cross-terms with unknown signal
components are kmown approximate time-freguency laws
of these components can be found with the use of
geometrical rules [6].

The proposed idea is demonstrated in fig.2 and
fig.3., Fig.2a presents the auto WV-spectrum of
analyzed exemplary signal x(t) which consists of two

different sinusoids with Gaussian time envelopes-

(x(t)=sl(t)+sz(t)) and figures 2b and 2c show the real

parts of the cross WV-spectra between the test signal
r(t) (also a sinusoid with Gaussian envelope) and a
composite signal x(t)+r(t) for two different time
positions of the test signal r(t). Figures 2d and 2e
present the same spectra as figures 2b and 2¢ but with
other contour values. Modulation laws of the
components si(t) are found approximately with the use

of simple geometrical rules and they are marked in
figures 2b and 2c. Simple example of detection of the
chirp signal with QGaussian time envelope is
demonstrated in figures 3a and 3b.

Special classes of test signals should be chosen
for detection of different signals. To assure higher
accuracy of the method at least two test signals or
one in two different time positions should be used for
precise localization of each signal component.

The presented indirect detection technique does
not require a time-consuming computing of many
WV-spectra as the standard ones (10)(11), but instead

of this it should wuse comprehensive pattern
recognition methods when wused for umsupervised
detection. It can be used separately or as an

additional tool for verification of a hypothesis. In
the sécond case, when the localization of the

cross-terms is known approximately, the application of
the method is easier, more appropriate and more
effective and probably it can improve the detection
resolution.

5. CONCLUSIONS

It was shown that in the case of signal
detection the cross-terms generation in  the
Wigner-ville distribution plays a very important role.

The proposed new detection idea based on the
symnetry feature of cross-terms generation was
initially tested. It looks attractive but requires an
additional development of tools for am unsupervised
detection.

The presented method can be especially useful
for additional verification of hypothesis.
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