Consider a problem of detecting a deterministic signal in white
Gaussian noise and a transient disturbance which has a known
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RESUME

On etudie un schéma semi-déterministe pour la détection d’un signal déterministe en
présence de bruit blanc normal et d’une perturbation transitoire. Le schéma estime la
perturbation par la méthode de la vraisemblance maximum a posteriori et ensuite
forme le rapport de vraisemblance apartir de cette estimation. On procéde en deux
¢tapes: d’abord la présence ou I’absence de la perturbation est decidee, et, en cas de
presence, la perturbation est estimée. On donne deux examples: dans le premier la
perturbation a une forme connue et une époque d’apparition al€atoire; dans le second
c’est un bruit gaussien avec une amplitude partiellement Rayleigh. L’algorithme de
Lempel-Ziv est propos¢ comme proc€dure simplifi€e pour décider la presence de la
perturbation. Cette alternative a des avantages quand la perturbation est rare et le filtre
adapt€ est appropri€ la plupart du temps.

SUMMARY

A semi-deterministic scheme is presented for detecting a deterministic signal in white
Gaussian noise and a random transient disturbance. This scheme estimates the disturbance via
the maximum a posteriori likelihood method and then forms the likelihood ratio using this
estimate. The estimation proceeds in two stages: first, presence or absence of the disturbance
is decided, and, if present, then the disturbance itself is estimated. Two examples are given to
illustrate the scheme: in the first, the disturbance has a known shape with a random appcarance
time; in the second, it is a Gaussian noise with a partially Rayleigh distributed amplitude. The
Lempel-Ziv algorithm is proposed as a simpler altemative to the computationally burdensome
procedure for deciding the presence of the disturbance. Such an altemative is advantageous
when the disturbance is rare and, hence, the matched filter is appropriate most of the time.

dx(*) is the observable data,

I. INTRODUCTION 5 () is the deterministic signal,

f() is a known waveform with  f(£)=0,

t<0 or

t>T,

waveform but unpredictable and infrequent occurrence. Stated u is a random appearance time with the probability of appearance &

more precisely,

and, once it appears, it is uniformly distributed on (0, T), namely,

s(adt + ft—-u)dt + dw(@) , (Hy) (la)

dx(t) =

0<t<T, PuzT)=1-¢, PE<ugt+dt)=edtiT,

ft-u)dt + dw(e) , (Hy) (1b)

@

dw(-) is white Gaussian noise with power spectral density 6” , i.c. ,
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The likelihood ratio for this detection problem is easily derived as
follows:
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where P and P, are probability measures induced by the right-
hand sides of (la) and (1b) respectively, and P, is the Wiener
measure corresponding to white Gaussian noise. E, denotes the
expectation with respect to ¥ and

x={dx(t), 0<t<T}, s={s(t), 0Lt<T},

fu={ft-u), 0<:<T}, (s,%x)= jOTs(r)dx(t) )

The first term of (4) is the familiar log likelihood ratio for
detecting a deterministic signal in white Gaussian noise which
yields the matched filter as the optimum processor. The second
term is due to the possible occurrence of the transient disturbance.
According 10 the Neyman-Pearson theorem, use of this log
likelihood ratio gives the maximum detection probability for a
given false-alarm probability.

It is noteworthy that addition of such a simple disturbance,
even with rare occurrence (€ << 1), should introduce a
considerable complication in processing the data. One might
wonder if he should choose the simple matched filter which is the
appropriate processor most of the time. This brings up the
question of how seriously one should take the completely
probabilistic optimality criteria such as the Neyman-Pearson.

In the absence of the disturbance, i.c., when white Gaussian
noise is the only noise in the data, the matched filter is
traditionally operated at high output S/N (signal-to-noise ratio),
which is achieved either by a high input S/N or a long observation
time (if the signal has a long duration). Thus, the output is
sufficiently greater when the signal is present than when it is
absent so that the decision on the signal presence is nearly
deterministic. In other words, although the matched filter is
derived as the optimum processor according to the probabilistic
criterion, its performance is deterministically satisfactory.

When the transient disturbance is introduced, the situation
changes greatly. Because of its rare occurrence, the data on hand
most likely contain no disturbance and, hence, use of (4) rather
than the simple matched filter results in inferior detection
performance. In addition, the data-processing complexity due to
the correction term in (4) makes this detection statistic
unattractive, specially because the correction term is unnecessary
most of the time. On the other hand, when the disturbance does
appear and, especially if it resembles the signal and is large in
comparison, the comection term may not be adequate to avoid the

false-alarm, Thus, use of the completely probabilistic criteria such
as the Neyman-Pearson in this case leads to unsatisfactory results.

In this paper we propose a mixed strategy where the
disturbance is treated as a semi-deterministic object while white
Gaussian noise is as a random object. That is, the disturbance is
estimated using the maximum a posteriori likelihood method and
then the classical likelihood ratio is formed using this estimate.
The estimation proceeds in two stages: first to determine if the
disturbance is absent, i.e., u 2 T, and, if not, then to determine
where it is in [0, T). This estimation - detection procedure is
illustrated by the next two examples.

II. EXAMPLE A

In the classical formulation where the data x is a finite
sequence, the likelihood function is the joint probability density of
x viewed as a function of the parameter u. When x becomes an
infinite sequence or a function, the natural generalization is the
Radon-Nikodym derivative with respect to some reference measure
which does not contain the parameter. Recall that the probability
density is the Radon-Nikodym derivative with respect to Lebesque
measure. The natural choice for our reference measure is the
Wiener measure P,,. Then, the likelihood functions under two
hypothescs H; and H of (1a) and (1b) are

il =y{x, s)ex L , x—s)—lllfll2 under H
de yix, P 0_2 wr 5 Hu ’ 1
(7a)
dPy | 1 1
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where

W(x, x) = exp é (:(s, x) - % usuz]

and Py |, and Py |, denote the probability measures induced by
(1a) and (1b) respectively when « is regarded as a fixed constant,
Upon combination with the "a priori" probability of u given by
(2), the maximum a posterior likelihood estimation of u proceeds
in two stages. First we compare the following four likelihoods:
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If ecither one in (8) is the largest, the maximum a posteriori
likelihood estimate of u, denoted by (x—s) (or &(x)), is greater
than or equal to T and hence f; = 0. Thus, the detection statistic
is given by

ar;y |
dP £ IuZT 1
o® log del =(s,x)—7nsu2. (10)
0
deH quT

That is, we decide that the disturbance is absent during the
observation period and, therefore, we use the matched-filter output
as the detection statistic.



On the other hand, if (9a) (or (9b)) is the largest, #(x —s) (or
u(x)) is taken as the value of u that maximizes (7a) (or (7b)), and
the detection statistic is given by
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where & = f(x~s) if (9a) is the largest (or & = a(x) if (Ob) is the
largest). That is, we decide that the disturbance is present and
estimate the appearance time, which is the only unknown
parameter, and subtract the estimated disturbance from the data
before matched-filtering.

Observe that the disturbance has been treated as a semi-
deterministic object while the white Gaussian noise is treated as a
genuinely probabilistic object. As such object, the disturbance
(actually the appearance time) is estimated and the probability
distribution associated with it is used in this (maximum a
posteriori likelihood) estimation as the a priori probability. Once
the disturbance is estimated, it is treated as a known object. That
is, it is simply removed from the data and the detection problem is
reduced to the classical one. We note that whether it is the
decision on the presence-or-absence of the disturbance or the
estimation of the appearance time after it is decided to be present,
there are two likelihood functions to be considered corresponding
to two hypotheses. This is characteristic of the estimation in the
detection context.

oI. EXAMPLE B

Instead of using the appearance time, we may use the
amplitude of the transient disturbance to characterize its occurrence
as follows:

@) 12

0<t<T,
(Hy) (12b)

s()dt + rz(t)dt + dw(t) ,
dx(t) =
rz(t)dt + dw(t) ,

where {z(z), 0 <t £ T} is a Gaussian process with mean 0 and
covariance function R, and

2
Pr=0)=1-¢, PO<r<&)= sj exp[—z‘n?}dn

13)

and r is independent of w and z. The disturbance in this example
is a Gaussian noise and its rare occurrence is described by the high
probability 1—¢ that the amplitude is 0 and, once it occurs, its
effect is characterized by the probability distribution of the
amplitude, which is taken to be Rayleigh. This model is of
special interest as rz(¢t)dt + dw(t) for each ¢ has a probability
density which is Gaussian near the origin but exponentially
decaying far away from the origin. Such a probability density was
shown to be the least favorable density in the "contaminated
Gaussian" class and the limiter-correlator was shown to be the
"locally optimum" detector (detection statistic) [1].

The two likelihood functions, corresponding to (7a) and (7b),
in this example are given respectively by

dI)l |z,r 1 1 2 2
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and the four likelihoods to be compared are
daP 1 I Z,r
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where E, , . denotes the expectation with respect to the process z
and the random variable r under the constraint r > 0. Evaluation
of the expectation with respect to z is carred out via the
Karhunen-Logve expansion of z:

z(t) = Z Eioi), 0=:=T, (16)
i
where
[ R 6 =Ny, 0<1<T,  (7)
and {;, j = 1,2,... are independent Gaussian variables with mean

0 and variance 021 Thus, for example,
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where p(q) is the probability density of ¢ =r? which is
exponentially distributed with parameter 2 o2

If either (1~€)y(x,s) or 1—¢ is the largest among the four
members of (15), we decide the disturbance to be absent and the
detection statistic is the right-hand side of (10), namely, the output
of the matched filter minus the bias llsI?/2. Otherwise, the
likelihood function (14a) or (14b) must be maximized with respect
to the probability measures induced by z and r to obtain the
maximum a posterori likelihood estimates of z and r. The
maximization regarding z is carried out again via the Karhunen-
Lozve expansion, namely, by maximizing with respect to the
probability density of {; foreach j =1,2, ....

Suppose the last member of (15) is the largest. By examining
the integrand of (18) and through (16), it is easily seen that the
maximum a posteriori likelihood esﬁmate of z given r is

x| )= Z @), x) ¢; - (20

1+7 2l
The max1mum a posts:non hkehhood estimate of r, denoted by r,
is obtained as F = () where g is the solution of the equation

x 2

J

Then the maximum a posteriori likelihood estimate of rz() is
given by

a2

.. R A;
PR | r=h) = 3 ——— (6,100 . @2)
i 1+r l]

In the case where the third member of (15) is the largest, the
maximum a posteriori likelihood estimate of rz () is obtained by
simply replacing x in (22) with x—s where  is the same
functional but of x—s in this case.

By substituting each of (22) and its "x—s" version into (14a)
and (14b) and by taking the logarithm of the ratio of the two, we
obtain the detection statistic
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By substituting (20) intc (23b), we find the input to the
matched filter to be
1

g =} = ®;, x)0;
x-rz(x|r=p) . ?m 9, X)0;

which is in the form of a generalized process. Then the left-hand
side of (21) is seen as the norm-square of x — 7 z(x | r=7) relative
to the kernel R. Thus, when it is decided that the disturbance is
present, the nonlinear device sets the norm (relative to R) of the
input data to a constant, namely, o/a. In other words, instead of
the input itself being clamped (or limited) at every instant of time,
as in [1], the norm of the input is clamped and this norm-clamped.
output of the nonlinear device is matched-filtered.

1V. DETERMINATION OF DISTURBANCE PRESENCE
BY LEMPEL-ZIV ALGORITHM

We observe in (8) - (9b) and (15) - (19) that determining the
presence of the transient disturbance by comparing the four
likelihoods is computationally too burdensome, especially in the
case of (19). Hence we propose as a simpler, though ad hoc,
alternative the Lempel-Ziv parsing algorithm [2]. In order to
apply the algorithm, the instantaneous output y (¢) of the matched
filter must be discretized and quantized first. Define two sequences
&1s s yn) and (vq, ..., v,) by

T
i-1 0 if y;<0,

1 otherwise ,

]

1

yi=s( T)

n
-

ax(t), v;= {

T

n

The parsing algorithm can be best described by an example.
Suppose the given data result in the following binary sequente
(with length n = 15):

0100010000011160

Then we place a comma whenever a new subsequence (phrase) is
encountered. Thus, we have

0,1,00,01,000001,11,0 cn)y=17

and the number of commas, denoted by ¢ (), is 7. It is not too
difficult to imagine that c(n) would be smaller for a “regular”’
sequence than for a "random" sequence. For example, the
sequence of all 0’s has c (n) increasing as Vn for a large n and,
hence, ¢ (n)log c (n) grows as \mlog n, while ¢ (n)logc(n) for a
sequence taken from independent and identical distributions is
known to grow as n [2]. Therefore, a binary sequence resulting
from the "signal-plus-noise" data would yield a smaller ¢ (#) than
the one resulting from the "noise-alone” data. Thus, if the
disturbance resembles the signal and, hence, is much more regular

than the noise, presence of the disturbance, with or without the
signal, should be exhibited by the decline in ¢ (1) from its value
for the noise-alone data. Note the disturbances which differ
significantly from the signal (or even orthogonal) are filtered out
by the matched filter and, hence, there is no need for concern.

Numerical illustration using Example A is shown in Table I
where the simulation using data-sequence of length 1000 is
repeated 1000 times. The signal is taken to be a sinusoid with the
period 100 and S/N = 40 at the matched-filter output. The
disturbance appears at the mid-point of the observation interval,
i.e., i = 501, but has a much larger amplitude, 5 times the signal,
and slightly higher frequencies, 1.05 times the signal (1.05f) in the
first case and 1.1 times (1.1f) in the second. In the first case, the
matched-filter output is significantly increased from the “noise-
alone" level whether the data contain the signal or the disturbance.
Hence the threshold decision device would register “signal-
present”. However, the c(n) valuc for the disturbance is much
lower than the one for the signal. Hence, the disturbance can be
detected by examining the ¢ (n). Note that it cannot detect the
presence of the signal. In the second case, the matched-filter
output for the disturbance is negligible compared to the one for the
signal because the disturbance is sufficiently different from the
signal and, hence, is filtered out. Nevertheless, the ¢ (n) values
exhibit definite difference comparable to the previous case.
Although these numerical results ar¢ only preliminary, we can
conclude the following: the Lempel-Ziv algorithm used in
conjunction with the matched filter (i) is effective when the signal
is weak but has a long duration (i.e., a long observation time) and
the disturbance resembles the signal and is larger in comparison;
(ii) is not effective in detecting the signal whether the disturbance
is present or not. Its main advantage is its simplicity and
universality, not requiring the detailed knowledge of the
disturbance.

Min Mean Max S.D.
-.0170 .0001 0224 0064

No Signal & | (s, x)

No Dist. c(n) 168 1719 175 1.0
Signal & (s, ) .0230 .0401 .0624  .0064
No. Dist. c(n) 166 170.3 173 12

No Signal & | (s, x) 0480 .0651 .0874  .0064
Dist. (1.05f) c(n) 158 164.3 169 1.9
Signal & (s, x) | .0880 1054 1274 .0064
Dist. (1.05f) c(n) 151 1592 165 2.1
No Signal & | (s, x) -.0003 .0220 .0064
Dist. (1.1f) c(n) 159 166.1 171 1.7
Signal & c(n) 0226 0397 .0620 .0064
Dist. (1.1f) c(n) 158 164.7 169 1.8

Table 1. Numerical Simulation of Example A,
(s, x) = Matched-Filter Output,
S.D. = Standard Deviation,
f = Signal Frequency.
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