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Summary

Recent results on detection of random nonGaussian
signals in additive Gaussian noise are discussed. A
discrete-time approximation to a likelihood ratio
detection algorithm is discussed, and preliminary
results are presented for a computational evaluation
of the performance for this approximation.

Résumé

D’abord nous présentons un résumé des résultats
récents sur la détection des signaux aléatories non-—
gaussien dans le bruit gaussien additif. Ensuite,
aprés une discussion sur une approximation A temps
discret a4 une algorithme de détection par le rapport
des vraisemblances, nous présentons les résultats
préliminaires d’une évaluation numérique de 1’effica-
cité de cette approximation.

Introduction

Detection of nonGaussian signals is a problem
that arises frequently in underwater acoustics. See,
for example, the discussion in [1]. The noise in such

problems is typically additive and frequently Gaus-
sian. In some applications, it is nonGaussian, but
with properties similar in several respects to those
of a Gaussian process.

Detection of Gaussian signals in Gaussian noise
is a subject on which there is a voluminous litera-
ture, and likelihood ratios for such problems are by
now well-understood [2]. However, detection of non-
Gaussian signals in Gaussian noise is a quite dif-
ferent matter. Until very recently, the results on
nonsingular detection and likelihood ratios for such
problems were limited to the case where the noise is a
Wiener process [2]. [3].

For detection of nonGaussian signals in Gaussian
noise when only moment information is used, one can
assume a convenient form for the detector, and choose
the optimum detector from this class using a signal-to-
noise-ratio criterion. The most commonly used class
of detection algorithms based on moment criteria is
the quadratic-plus-linear detector with optimization
done according to the deflection criterion [4], [5].
[6]. Thus, the test statistic for an observation x is
A(x) = <x,Wx> + <x,h>, where <¢,*> denotes the imner
product in (as appropriate) L2[0,1] or n—dimensional

Euclidean space E®. The operator W and vector h are
2
[Eg,yA(x) - EyA(x)]

2 2"
EA(x) = (Byh(x))
EN(') denotes expectation w.r.t. the noise, ES+N(.)
The optimum (W,h) is then
given by [5]. [6]: W = R;iNRNRQiN, h= Rl_'lm. where
RS+N and RN denote the covariance operators of the

selected to maximize D(W,h) =

w.r.t. signal-plus-noise.

signal-plus-noise and noise processes, respectively,
and m is the mean of the signal process.

Since the information required to implement the
deflection criterion quadratic-linear detector is
relatively easy to obtain., and the algorithm is well-
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known and widely-used, it is an appropriate benchmark
for evaluation of the performance of any algorithm for
detection of nonGaussian signals in Gaussian noise.

Of course, the desired detection algorithm for
any detection problem (using various criteria) is
well-known to be a monotone function of the likelihood
ratio. The difficulty is that such algorithms require
more information than is usually available. In par—
ticular, in sonar applications one will typically not
know the family of finite-dimensional distributions
for the signal-plus—noise process.

. However, there are some models of this detection
problem for which the implementation of the likelihood
ratio does not require advance knowledge of the sta-
tistics of the signal-plus-noise process. Such a
detector is described in [7]. based on theoretical
results obtained in [8]. It assumes that the signal-
plus-noise is a filtered diffusion process. This
algorithm will be briefly discussed in this paper, and
some preliminary computational results on performance
will be presented, including comparison with perfor-—
mance of the optimum quadratic-linear detector based
on the deflection criterion.

The theoretical results are based on the spectral
representation of purely nondeterministic second—order
processes, as developed by Cramér [9] and Hida [10].
In particular, if (Nt) is any m.s. continuous purely

nondeterministic stochastic process on [0,1], then

(Nt) has the proper canonical representation [10]

¥ t
N, = izl.fol:i(t.s)dBi(s)

where the multiplicity M can be infinite, {Bi' i £ M}

is a family of mutually orthogonal orthogonal-
increment processes with (non-decreasing) variances
{Bi, i { M}, and the non-random functions {Fi’ i < M}

satisfy Th_ [oSoF;(t.5)dB, (s)dt < o,

In the case where (Nt) is Gaussian, the processes
{Bi’ i { M} are mutually-independent independent-

increment Gaussian processes, which can be assumed
path—-continuous.

The equality in the above expression for (Nt) is

an equality in the mean-square sense for each t.
However, by assuming separability, one obtains path
equality in the almost sure sense.

Nonsingular Detection and Likelihood Ratios

A basic question to be considered for any detec-
tion problem is that of model validity. Since physi-
cal detection problems are typically nonsingular (non-
zero probability of error), nonsingularity is an
important consideration, especially in the case of
continuous—-time processes. In fact, since one is
typically seeking to determine a likelihood ratio, the
model should first by analyzed to determine whether or
not a likelihood ratio exists; this is one aspect of



116

nonsingular detection. The version of nonsingular
detection required in order for the likelihood ratio
to exist is of the following form: for any detection
algorithm giving zero probability of false alarm, one
must also have zero probability of detection. This is
absolute continuity of the signal-plus-noise proba-
bility measure PN with respect to the noise measure

my (bgyy << M)
the space of sample functions by the stochastic pro-
cesses (St+Nt) and (Nt); they can be taken on either

These probabilities are induced on

IR[O'l:], the space of all real-valued functions on
[0.1]. or on L2[0,1].

necessary conditions have been obtained for each case
[8], along with expressions for the likelihood ratio.
These conditions all involve a signal-plus-noise
representation of the form

Sufficient conditions and

St+Nt=

). 8

t
p JoF; (t.5)dX; (s)
i=1
where Xi(t) = f(t)Qi(s)dBi(s) + Bi(t), and the vector
stochastic process (Q(t)) satisfies certain measura-
bility conditions and, moreover, }Ili(_lféQ?(s)dﬁi(s) { o

with probability one. The last condition is equiva-
lent to the signal process having almost all paths in
the reproducing kernel Hilbert space of the noise.

A Discrete-Time Detection Algorithm

The development to be described here is given in
more detail in [7]. First, it is assumed that the
original continuous~time noise process has multipli-
city one and that (Xt) is a diffusion with respect to

a Wiener process (Wt):

X(t) = JgolX lds + W(t).

See [7] for a discussion of these assumptions. Of
course, this does not reduce the class of noise
processes, since any discrete-parameter zero-—mean
Gaussian noise process can be obtained as a causal
linear operation on white Gaussian noise. Thus, one
can write the noise vector N as N = F 5¥, where oW
consists of normalized increments of the Wiener
process. The discretized form of the signal-plus-
noise process under these same assumptions is then

S + N = F 8X, where for a sampling interval A,
i-1
X(iA) = A 3 ofX(jA)] + W(iA).
j=1
(8%), = X(i4) - X([1-114).,  X(0) =

Moreover, RN = FF*. where F is a lower~triangular

matrix. Let L be the summation matrix, (I..)()i = z}_lxj
(Lij =1 for i £ j; Lij =0 for i > j). The discrete-
time detection algorithm then can be expressed as fol~

lows. For an observation vector in an, an approxima—
tion to the log-likelihood ratio is given by the test
statistic

n-1 _ -1 -1

1
3 (el E R DILE 0y, - LE
n—l

- (A72) 3 T E
§=0

™(x) =

z)j]

-1

%]

n~1 -1 -1
n-l

- (2) TS ILE W) 0.
j=0

If now a new data point x is observed, the approxi-

n+l

mation has the recursive form

n+1

™ (x) = 7(x) + o[ (L F

L DIE ),
- (4/2) L E R T
Implementation and calculation of 7 require the
following operations. First, the function o must be
known and programmed. Given the value of 'rn(xn) and

the observation x = (x X ), one stores 'rn(gn).

When the data point

1’
<, o[(L E e, 1. and (LE “)n.

. P n+1
%41 is received, it is only necessary to use X to
-1 n+l .
calculate (F } atl’ which means to cross—correlate
+1

with the n+l row of _E—‘l This

number, say bn+1' is then used to form Tn+1(§n+l)

Py - ) ¢ oS Tb,, - (/2)0°[3b, ]

Other approximations can be given, including one [1]
based on the eigenvalues and eigenveciors (for an

. n
the observation x

observation in En) of the nxn matrix with elements
{RN(i,j): i,j { n}. The form given here has the

advantage of computational efficiency, including
recursive properties.

Of course even under the above assumptions, one
cannot assert that the discretized version of the con-
tinuous-time likelihood ratio is the actual discrete—
time likelihood ratio. For the Gaussian case (o
linear), optimality can be shown [7], but for a
general o one can only assert asymptotic optimality.
The designation of this algorithm as a "likelihood
ratio” should be understood to mean that it is an
approximation to the log-likelihood ratio.

In many applications, one will know RN (thus the
matrix F), while o will be unknown. One procedure for

implementing this detector is then as follows. Given
an observed discrete—time sample function, y, obtain

(an assumed) 56X by 86X = F_lx. Using X(0) = 0, form X
and use this sample vector to estimate ¢. Substitute

o into the likelihood ratio and then evaluate the
likelihood ratio using the original observation y.
Compare the likelihood ratio with a threshhold, the
threshold being determined by the desired value of the
probability of false alarm, using the estimated value
of o and the known RN

Computational development of such an algorithm,
based on single-sample-path information, is now under-
way. Some preliminary results are given in the next
section. Since determination of the matrix F is not
expected to be a major problem, the results were
obtained for F = I. An algorithm for estimating o was
developed, based upon assuming that the drift function

o can be approximated by a low-order polynomial. The
simulation is described in the next section.
Simulation Results

A series of simulations were conducted. In each

case an ensemble of sampled noise paths and an ensem—
ble of sampled signal-plus-noise paths were generated
and processed by the likelihood ratio detector. The
same noise and signal-plus-noise ensembles were also
passed through the deflection criterion detector to
provide a relative measure of performance. It should
be noted that in obtaining these preliminary results,
the diffusion drift function was estimated from an
observed diffusion path. In practice the diffusion
drift will be estimated from the observation vector,
which may be only noise.

The Wiener noise paths and diffusion signal paths
considered here are indexed by an interval of length T
and sampled at a rate R. Each path is then repre-
sented by RT samples. The size of the signal path
ensemble and .the size of the noise path ensemble are
eaqh N. Thus, the diffusion signal-plus-noise sampled




path ensemble {Xn . n=1,....RT} and the Wiener

,t

noise sampled path ensemble (Wn ¢r 0= 1,...,N,
t =1,...,RT} are each represented by NRT sample
points. Wn 0= 0 and Xn 0= O for each n. For each

simulation, noise path samples were generated recur-
sively using wn.t = wn,t—l + (p/VE)N(0,1), where

N(0,1) represents independent realizations of a
standard normal random variable and p is the variance
parameter of the Wiener process. Samples representing
the diffusion path ensemble were generated using

Xo o =%y e ¥ (R)O(X ( 4) + (p/¥R)N(0,1), where o
is the drift of the diffusion. The realizations of
the standard normal random variable used in the
formation of the diffusion samples were generated
independently of the set of samples in the noise path
ensemble.

To calculate the deflection detector output, the
known inverse covariance matrix for the Wiener process
was used. For the diffusion signal-plus-noise
process, the covariance matrix was estimated from the
ensemble of sampled paths:

N
Rx=l 3 XX - XX
n___l_n—n

where Xn is the column vector of samples of the nth

path in the signal-plus-noise ensemble and X is the

sample mean X = il{—ENnﬂX_n.

Polynomial regression provides one approach to
the estimation of the drift function of the diffusion.
The diffusion (Xt); t € [0.T] is given by the
equation:

t
Xt(w) = Ioa(Xs(w))ds + Wt(w)

"where (Wt) is a Wiener process and o is the unknown

drift function. An increment of the diffusion can be
t+A

expressed as xt+A-xt = .I't o(Xs)ds + (wt+A_wt)'

Define 6Xt = xt+A_Xt' 6Wt = wt+A

small enough that J'?'Aa(xs)ds = a(Xt)A. - Suppose also

-Wt. and choose A

that A divides T; then GXt a(Xt)A + 6Wt. Suppose o

is a polynomial, o(x) = Op+ox+ ...+ orpxp and let
g be the ptl-dimensional vector of coefficients of

o(x). Then one can write Y = Xg + N where

1 1 i-1

=% M =1 X =¥
where 1 { k {T/A~1and 1 <1 ¢ p+tl. N is a vector
of i.1.d. Gaussian r.v.’'s with zero mean and standard

deviation of p/vA. The coefficients of o can be esti-
mated by solving the regression Y = Xg + N.

The order p of the polynomial o is unknown. It
is estimated concurrently with g by solving the
regression problem Y = Xg + N first for p = 0 and then
for successively higher values of p until increases in
the coefficient of determinatjon

n A - n —_
-3 -0y -0
k=1 k=1

are no longer significant. This same procedure can
also be applied in cases in which the drift function
is not a polynomial, although in many such cases it
may fail to give reasonable estimates and could be
improved upon in a variety of ways. However, this
estimation procedure does serve to demonstrate the
potential of the likelihood ratio detector and is the
procedure used in obtaining the simulation results
shown in Figures 1, 2, and 3. The results shown in
these figures were obtained using N.= 5000, R = 100,
and T = 1. The variance parameter:p of (Wt) is unity.

The false alarm probabilities are 90% confidence-
bounded.

1.0
fix) = -25x
08}
& SNR =0.83
/
0.6 /
) y
W /
o e
04} e
”
,
’
”
02} e Likelihood detector
= « = = Deflection detector
0 1 Aok FUPEY | a At i sl L a2l
.001 01 P A i
FA
Figure 1. Detector Performance, Linear Drift.
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Figure 2. Detector Performance, Cubic Drift.
1.0 -
) ———Likelihood detactor
0.8 L - = = = Deflection detector
o6t
I‘I] r
0.4} P
L7 fx)=-10Tai(2x)
U’ SNR = 0.83
0.2} Phe
- - -
- -
0 " s aaaal —_— i syl PRI ST RS |
.001 .01 1 1
P
FA

Figure 3. Detector Performance, Arctangent Drift.
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