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RESUME

Les Filtres Numériques Quasi-Continus (FNQCs) sont des systtmes numériques, dont la structure peut étre directement dérivée
de celle de filtres analogiques. Ils se caractérisent par un traitement du signal réalisé de manire quasi-continue dans le temps
I'aide de signaux modulés en fréquence d'impulsions. Les opérateurs des FNQCs sont des compteurs-décompteurs et des
multiplieurs 2 taux programmable. Disposant de ces deux types d'opérateurs, il est possible de synthétiser des filtres & boucles
imbriquées similaires & des filtres RC actifs ou a des filtres & capacités commutées. L'analyse des effets dus 2 la quantification
des variables d'état peut se faire a Paide d'un filtre numérique classique, similaire au FNQC, par des programmes usuels. Cette
étude permet de choisir le nombre de bits des compteurs-décompteurs et des multiplieurs 2 taux programmable et d'assembler,
sur un circuit intégré VLSI, les tranches élémentaires nécessaires a la réalisation du FNQC.
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Quasi-Continuous Digital Filters (QCDFs) are digital systems the structure of which can be derived from analog filters. They
are characterized by a quasi-continuous representation of signals, due to the pulse frequency modulation of the variables. Up-
down counters and rate multipliers are the basic operators of this class of filters. These operators allow the synthesis of leap-
frog filters, similar to RC active filters or switched capacitor filters. The round off noise resulting from the state variable
quantization can be analyzed by means of usual software, using a classical digital filter structurally similar to the QCDF. This
analysis determines the required number of bits for the up-down counters and the rate multipliers. The actual operators are
realized on a VLSI integrated circuit by the mere abutment of the required number of bit slices and assembled to build up the

QCDF.,
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I. Introduction ®

Quasi-Continuous Digital Filters (QCDFs) are characterized I” l | I ”l“m_lmmml“lmmﬂlmlmmﬂﬂmmmmmt

by a structure using simultaneously two types of binary signal
representation: bit-parrallel numbers and Pulse Frequency
Modulation (PFM) coded variables. Up-Down Counters (UDCs)

transform PFM signals to bit-parallel signals, performing an b) RM pulse frequency modulation of the signal given in fig. la
integration by counting the incoming pulses. Rate Multipliers
(RMs) weight thetr bit-parallel input and convert it to a PFM A UDC+()
signal.
Ar UDC(r)

a) Bit-parallel output signal of an UDC
¢) UDC integration of the signal given in fig. 1b

Figure 1 Characteristic signals of a QCDF.
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In an ideal QCDF, the PFM pulses can occur at any time,
causing the counters to vary asynchronously. The name given
to this class of filters has been derived from this basic property.
QCDFs have been briefly presented at two conferences [Far84]
[Far85] and more extensively in [Far86].

Figure 2 shows the QCDF realization of a first order
lowpass filter and compares it to an analog computer
implementation of the signal flowgraph of a RC filter. The
figure shows the UDC acting as an integrator and the RM
setting a filter coefficient.

b) Signal flowgraph realized by an analog computer
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Figure 2 First order lowpass filter.

Following the signal path within the QCDF, it can be
noticed that the QCDF input signal is PFM modulated. This
signal coding is particularly interesting for applications where
the input signal 1s directly available in this form, as it is the
case for some sensors or for signal transmission in a noisy
environment, since there is no need for an A/D converter, For
analog input signals, a voltage to frequency converter replaces
the A/D conversion.

The state variables are also coded using PFM modulation.
This reduces wiring costs and operator complexity, with the
drawback that the signal bandwidth is low compared to the
mean pulse frequency, the ratio being typically 2", where n is
the number of bits of the counters. For a given mean pulse
frequency, this fact leads clearly to a tradeoff between signal
bandwidth and quantization noise. QCDFs are best suited for the
realization of selective all-pole lowpass filters. In this case, the
filter synthesis, analysis and VLSI implementation are really
simple and straightforward.

Finally, the output can be got obtained in a bit-parallel way,
at the UDC output, or in a PFM form, at the output of the
RM.

This paper describes the complete realization of all-pole
QCDFs, by the example of a third order Butterworth lowpass,
starting from the leap-frog synthesis (part II), followed by the
analysis of the obtained filter (part III) and ending with the
design of a layout for VLSI integration (part I'V).

II. QOCDF synthesis in a leap-frog form

The design of a QCDF is based on an analog ladder reference
filter, terminated by equal resistances, in order to inherit its low
sensitivity to coefficient values. As for RC active filters
[Gir70] or switched capacitor filters {Bah82], an analog
prototype is designed to meet the desired filter response, From
this lumped element network, we can extract a signal flowgraph
which is exclusively made out of integrators and multipliers in
the case of an all-pole (Butterworth or Chebyshev) realisation.
These operators are replaced by UDCs and RMs in order to
derive the corresponding QCDF:
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b) Signal flowgraph
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Figure 3 Third order lowpass filter synthesis.

Referring to figure 3, we notice that the filter coefficients
are set by corresponding pulse frequencies (fy, f5, f3). They can
either be derived from the system clock or generated externally.
In the latter case, it can be pointed out that the coefficients are
entered via single wire connections. The frequency response of
the QCDF is given by the coefficients and remains independent
of the system clock frequency; this one has only to be high
enough to process every input and coefficient pulse.

For a third order Butterworth lowpass filter with a
normalized cutoff frequency of f, = 1/2m, the value of the
lumped elements ladder are given in table 1 according to
[Tem77] while the QCDF coefficients are specified in table 2,
where n is the number of bits of the counters.

Ci = 1[F] fi =1 -2".f,

L, = 2[H f = 1/2-2"-f,

C3 = 1[F] f = 1 -20.f,
Table 1 Table 2




The preceding expressions show that the QCDFs are best
suited for selective lowpass filtering. As we can see, the leap-
frog synthesis of all-pole QCDFs is simple and
straightforward; systems with transmission zeroes need more
overhead and optimal solutions are presently studied.

III. Analysis of the QCDF

Compared to the analog prototype, the QCDF suffers from
three non-idealities, namely:

. frequeny'warping due to sampling,
* quantisation noise
and « operation of the rate multipliers.

In an ideal QCDF, the information is processed
asynchronously throughout the filter. For a practical realization,
the pulses of the state variables are synchronized to the system
clock, and the outputs of the up-down counters are thus updated
at this rate. Sampling is always associated with a z-transform
mapping of the original analog to the sampled device transfer
function. In our case, the sampling frequency is very high
compared to the signal bandwidth so that the effects of the
frequency warping can be merely ignored.

The QCDF state variables, which can be found at the output
of the counters, are evidently quantized. The analysis of
quantization noise is similar to what is done in digital filter
theory. Rather than rewriting existing filter analysis software
for our purpose, we can derive a classical digital filter equivalent
to the QCDF which is then analyzed using existing tools
{Cla84]. For this purpose, it has been shown that the UDCsg
have to be replaced by an accumulator followed by a scaling
multiplier, and the RMs by a digital multiplier. As we want to
analyze only the effects due to the quantization, we choose the
filter sampling frequency arbitrarily high, typically of the same
order of magnitude as the QCDF system clock. Figure 4 shows
the digital filter equivalent to the first order lowpass of figure 2:

Figure 4 Digital filter, equivalent to the QCDF of figure 2.

Since the filter arithmetic is of unsigned type and overflow
is treated by saturation to ensure stablility, the QCDF acts as a
pseudopassive network, in the same way as wave digital filters
{Fet86].

More difficult to analyze is the rate multiplier. It performs
the multiplication of a pulse frequency modulated coefficient
with a bit-parallel state variable in a manner similar to the
techniques used for image dithering. The corresponding noise
was taken into account in the filter analysis, but the time
simulation and limit cycle detection had to be done with a
dedicaced simulator.

The analysis of the classical filter equivalent to the third
order Butterworth showed that the filter needs internally 11 bits
to ensure the correctness of the 8 MSBs at the output. The step
response simulation allows us to be even more optimistic
about the quantization noise effects (figure 5).
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Figure 5 Step response of a third order Butterworth QCDF.

IV. Integrated circuit implementation

The basic QCDFs building blocks have been designed for a
CMOS 2um technology (VLSI Tech. Inc. cmn20a). They
consist of Up-Down Counter (UDC) and Rate Multiplier (RM)
bit slices using static carry ripple-through logic. The UDC bit
slice is made out of an incrementer/decrementer, a saturation
overflow logic and a register driven by the two system clock
phases F1 and F2. The RM consists of a bit reversed (having
its LSB facing the RM input MSB) free running counter driven
by the filter coefficient and a comparator which sends out a
pulse when the RM input (CNT) is greater than the value read
from the bit reversed internal counter (INT).

register

Up-down counter bit slice

CNT

coO cI CNT > INT
(MSB <- LSB)

F1 .

register

F2 (F2 is filter coeff.)

CI - CO increm.
(LSB -> MSB)

rate multiplier bit slice

Figure 6 Up-down counter and rate multiplier bit slice.

One UDC-RM bit slice counts 112 transistors. The
placement of their connectors allows to build up an n bit
operator by the mere abutment of n bit slices. The UDC
overflow condition (OVF) is the carry out (CO) of the MSB
slice. The achieved up-down counters and rate multipliers can
also be abutted by pairs.
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Figure 7 8-bit up-down counter and rate multiplier.

Finally, an intermediate slice connects the operator pairs and
distributes the pulse frequency modulated state variables to the
neighbouring counters in the leap-frog manner. Figure 8
presents the floorplan of the third order 11 bit QCDF of
figure 3:
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V. Achieved results

The density of the basic slices is greater than 4 000
MOS/mm?2. The third order 11-bit lowpass filter has been
realized as shown in figure 8. It contains 3879 transistors and
uses 0.6 x 1.85 mm?2 = 1.11 mm?, which gives us a global
density of 3°500 MOS/mm2. The circuit has been integrated
and successfully tested up to 10 MHz clock frequency.

The filter layout, corresponding to the floorplan of figure 8,
is displayed in figure 9.

With a clock rate of 10 MHz, an 11 bit QCDF has a
maximal cutoff frequency of 5 kHz. The observed step response
matches the simulation results of figure 5.

VI. Conclusion

QCDFs show to be of interest for selective lowpass filters,
where the input is given as a PFM signal. The synthesis and
analysis steps are performed by well known analog and digital
signal processing methods. Due to the filter regularity, the
VLSI implementation is easy and the achieved transistor density
is high.
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Figure 9 Layout of a third order lowpass QCDF.
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