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RESUME

Dans le conférence on présente la construction des algoritmes pour calculer
NTTs d’apreés l1’idée de Rader. Pour N=p, oU p est un nombre prime, non-Fermat,
les algeritmes besoins seulement OCpCd1+d2+...dt)) opérations, au contraire de
OCPd1da" sont les mutuellement primes diviseurs
de p-1. Ca signifie, que consiruits d’apres cette idée algoritmes pour
transformation de Mersenne ne sont pas moin effectifs que ceux pour autres

.dt) pour le moyen direct, di

NTTs. En général, d’aprés 1'idée on peut construiredes amé&liores NTT modules,
utilisés dans les "FFT" algoritmes pour NTT. Le conférence contient aussi
quelques remarques concernant adoption pour NTT des algoritmes dérives
originalement pour DFT.

SUMMARY

In the paper the construction of Rader’s number thecretic transform algorithms
is described. It is shown that for N=p being non-Fermat prime numbers the
algorithms require significantly less operations than the known ones. Namely,

the number of operations is reduced from Odelda"'dtD to 0CpCd1+d2+...+dt)),

where di are mutually prime divisors of p-1. If applied to Mersenne transforms

the approach results in algorithms which computational complexities are not
higher than those for other NTTs, e.g. pseudo—Fermat ones. In general, the
method can be used for improving small-N NTT modules in FFT-like algorithms.
The paper contains also some general remarks on the transformation of DFT
algorithms into those for number theoretic transforms.

The idea of NIT can be treated

as an

Number theoretic transforms (NTID are used
for efficient computation of convolutions
using a special hardware. The most important
NTTs are Mersenne and Fermat transforms [1].
It is well known that the arithmetic for
Mersenne transform is especially simple.
Unfortunately, for the simplest realizations
its dimensions are equal to p, or 2p, p being
prime numbers. For other NTTs the problem of
efficient computation of transforms for sizes
being prime numbers is analogous to efficient
computation of small-N modules for the
discrete Fourier transform CDFID.

offspring of the idea of the DFT concept, so
it can be expected that some DFT algorithms
can be adapted to compute NTTs, toco. Namely,

for N being prime numbers Rader's algorithms
are of interest [21, [3]. The same is true
for pelynomial transforms (PTs), and, indeed,

it was shown that the use of Rader's PT
algorithms for N being prime numbers results
in dramatic reduction of the number of
operations [4]. Similarly as for PTs, the

omputational complexity of a multiplication
in an NTT strongly depends on the form of a
multiplier Ca shift vs a full ring
multiplicationd, so, the adaption of DFT
algorithms to the NIT case is linked with
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some limitations. Note that similarities
between NTTs and PTs are not accidental, as
it was shown that some NTTs can be treated as
PTs for digits [11.

In the paper the construction of Rader’s NTT
algorithms is described. The approach
consists in transforming the problem of

computing an N=pr—point DFT into that of

computing Cp—l)ps~point convolutions, p is an
odd prime, s=r-i,r-2,...,0; [31. It appears
that if the convolutions are mapped into
multidimensional ones on the basis of the
rule from [8}, the form of their coefficients
remains the same as for NITs, while the
computation of the p-l-point convelution
brakes down inte t stages, where t is a
number of mutually prime divisors of p-1.
Then, the number of operations decreases from
Odeld .d, 2 to OCpCd1+d2+...+dt)),

=N
p~1=d1d2...dt. The method gives

results for N=p not being Fermat numbers.

very good

2. ALGORITHMS

The most general definition of the DFT is the

following one*:
N-1
kn
XCkd = 2 xCndW <, k=0,1,. .. N1 C1d
n=0 )
where XCk2, x(n2, WN are elements of a
commutable ring, and WN is a Cprimitived root

of unity of order N. In the case of NTTs this
is a ring of integers modulo M2N, or,
sometimes, its extended version [6].

The most important feature of NITs is that
for some M WN are simply powers of 2:

kn

WN = 2 ‘mod M (@]
Moreover, in the case of M being a Mersenne
Cnot necessarily primed number the
computations are made simply in
one’s—complement arithmetic. Notice, however
that as:

M=2P -1, pis prime

2P mod M = 1, and 2 mod M # 1 if O<r<pC3>

hence N in (12 N=p. Till now this fact was
taken as an important limitation, as
efficient NTT algorithms for N being prime
numbers were not known. The use of more
complicated arithmetics, andsor other M solve
the problem only partially. Namely, in the
case of NTTs the choice of N values is
strongly restricted, and independent of the
computational complexity criterion. [13, [6].

The Rader’s DFT algorithm [2]1 exist for N
being powers of prime numbers (31, (7). It
consists in an observation that:

kn _ Ckndmod N
WN = WN C4>

which means that calculations of the product
kn can be made in a ring modulo N. If N is Ca
power of) a prime number, the ring becomes an
Cextended) Galois field. We are interested in

cases when N=pr, and p 1is an odd prime

¥ Some authors consider (1) as the definition
of NTT. The DFT is then the NTT for complex
numbers, see e.g. [8]1.

number. The Rader’s algorithms for N=2" exist
[71, in the case of NTTIs they are, however,
neither effective, nor simple. For such N the
slements of the field not being divisors of
zerc form a multiplicative group {ai} which

is cyclic, i.e.:

a = a,a , 1+m is taken modulo K, [@5»]
i+m i"m

where K 1is the rank of the group. The
divisors of zero are simply multiples of p,
hence:

K =p" - p" 1 = cp-1op7 Tt ced
So, the formula on the DFT <12 can be
rewritten as follows:
K1
XCa D = XCa > + Ca W, DK C7ad
ak = ak 2 an N a
n=0
N-1
KCpk’) = z an)ka PP }r=0,1,...,N/p1;
C7bd
n=0
where:
N p-1
" - . kn'p
XCa > = z xCpn” Wy C7ed

n’=

The summation in (7a) is equivalent to the
K-point circular correlation, which can be
computed using circular convolution

algorithms. XCpk’> and X(k> can be computed
using N/p-point DFT algorithms [3].

Notice that Pr—l and p-1 numbers in (B2 are
mutually prime. It means that the convolution

can be mapped inte mul tidimensional
r—1 ;
dixdax...xdtxp -point one, where di are
mutually prime [B], and:
t
p-1 = T d 4:5}
i=1
The pr_l—point convolution 1is de facto a
pol ynomi al product modul o cyclotomic

polynomial for ZN—l [3], however, this fact
need not be used here.

3. ARITHMETICAL COMPLEXITY OF ALGORITHM

Consider N=p. In this case (72:

N—1

XCpk’> = XCOD = 2 xC D Coad
n=0

XCk®D> = xCOD copd

If we compute circular convelutions directly,

the coefficients of conveolutions are [11,
[B1:

%m, D
WN , mi=o,1,....di—1; Di=Cp—1)/di 102
see (8D, with WN=2 ced. Any  further

transformation of algorithms causes that the
coefficients become more complicated. This
means that the computation of Rader’s NTT
algorithm requires 2(p-1> additions C9 plus
operations due to direct computation of
t—dimensional dlxdax...xdt-point circular

convolution. An d-point conveolutipn can be
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computed using od shifts and dcd~1>
additions, so, the overall algorithn
requires:
t
SCN=p> = Cp-1) z d, shifts, and c1iad
i=1
t
ACN=pd = C(p-1>[a+ z Cdi~1D] additions. (11bd
i=1
In the case of direct method:
N-1
n_ i ‘= .

z W= W, i=0,1,. .., N-L; iz

=0
n#i
which means that C(153:

N-2 N-1
_ _ kn
XCN-1> = xCOd z z *CPOW, S5
k=0 n=1

the fact was used in [1]1 for improving PT
algorithms. Taking inte account 13> the
direct method results in:
S(p) = Cp-13Cp-2> shifts, and C14ad
ACp> = (p-1Dp additions. C14b2

Comparing (11> and (14D we can see that the
Rader’s NTT algorithm require asymptotically

OCpZdiD operations, in contrast to OCpHdi)
i i
for the direct method. Table I shows that
indeed, except for N being Fermal prime
numbers improvements due +to Rader’s NTT

numbers
p-1 has
31, 61,
numbers

algorithm are dramatic. Reductions of
of coperations are especially big when
many small divisors, e.g. for p=1i3,
71, 187, and 211. For Fermat prime
Rader’s NIT algorithm is identical to the
"ordinary" direct method, hence, the results
are somewhat worse than those implied by
14>,

The Rader’s NTT algorithms for powers of a
prime are not interesting here. Namely, they

contain p-1 Cin fact p-2 [41> P ‘-point, and
pr_l Cp-1D-point circular conveolutions to be
For the FFT-like algorithms

the operations consist of rpr_l Cp-13-point

algorithms. Of course, p has no divisors, so,
even for r=2 FFT-like algorithms are better
than Rader’s ones, see also [4].

computed, N=pr.

4. SUMMARY AND CONCLUSION

In the paper the construction of number
theoretic transform algorithms using the idea
of Rader is described. It is observed that if
N=p is an odd non-Fermat prime number the
approach results in a class of algorithms
having computational complexity of rank
OCpZdi), where di are mutually prime divisors
i

of p-1, in contrast to OCpld,> for direct
i

i
method. As it 1s shown in Table I, the new
algorithms are really very efficient,
especially for big numbers of divisors of

p-1.

The introduction of Rader's NIT algorithms
causes that the computational complexity of
long Mersenne transforms reduces to the level
characteristic of other NTTs. Consider, for

TABLE I

Numbers of operations for NIT algorithms for

N=p, p is a prime number.
P p-1 Zdi Rader (113 Direct (14D
shifts-/adds |shiftissadds
2 1 1 12 o 2
3 2 2 46 26
5 4 4 1620 1220
7 2x3 s} 3030 30742
11 2xB 7 70,70 g0-110
13 4x3 7 8484 132156
17 16 16 286272 240272
19 2x9 11 198198 306,342
23 ax11 13 286286 462506
28 4x7 11 3087308 756812
31 2x3x5 10 300270 870,830
37 4%x9 13 4687468 126801332
41 Bx5 13 520520 15601640
43 2x3%7 iz 5047462 17221806
47 2x23 25 11501150 20702162
53 4x13 17 884./884 26822756
59 Bx29 31 17981798 33063422
&1 4x3%5 12 720,660 35403660
687 2x3x11}] 16 10856990 42804422
71 ExBx7 14 980910 483074970
73 Bx3 17 12241224 51125286
79 2x3x13]| 18 14041326 60066162
89 8x11 198 187271672 76867832
103 2x3x17}) a2 22442142 1030210506
127 2X9x7 i8 226821 42 18575016002
211 |2x3x5x7}{ 17 3857031850 4388044310

example, the G8~point pseudo-Fermal transform
{11. For the structure of the prime factor
algorithm (2x8)x17 it requires 4x240 shifts

due to 17-point algorithm, Table I, plus
C2-1217 ones for rotation factors, which
gives 977 shifts, and 20(2x34)+4x272=1224
additions, Table I. As can be seen, the

algorithm is worse than the Mersenne ones for

N=B1, B7, 71, and only slightly better than
that for N=73. Additionally, the
pseudo-~Fermat transform requires a special
stage of final reductions, and has

number of
Of course, the
improving non-Mersenne

approximately two times smaller
effective bits of results [1].
idea may be used for

NTTs, too.
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