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RESUME

Dans cet article, nous introduisons un algorithm rapide pour le calcul de la factorisation QR d’une matrice de Vandermonde
complexe V de type colonne confluente. La compléxité de cet algorithme est O(mn), ot m représente le nombre de lignes de V
et n le nombre de colonnes de V (nous supposons que m > n). Cer article présente une généralisation de résultats précéden?s
[9]. Les matrices Q et R peuvent étre calculées indépendamment si besoin est. L’algorithme proposé permet une écomnomie
importante lors de la résolution de systémes d’équations définis par une matrice de ce type au sens des moindres carrés. La
résolution d’un tel systéme apparait par exemple lors de ’estimation de 'amplitude et de la phase d’exponentielles atténuées
dans la version moindres carrés de la méthode de Prony, et quand certains modes sont répétés.

SUMMARY
In this paper we introduce a fast algorithm for computing the QR factors of a complex column confluent Vandermonde matrix
V. The complexity of the algorithm is O(mn) where m is the number of rows in V and n is the number of columns (we assume
that m > n). This result generalizes a previous result presented in [9]. The matrices Q and R may be computed independently
if desired. Such an algorithm allows for an important saving when solving systems involving such matrices in the least squares

sense, as for example when estimating the magnitude and phase of damped exponentials in the least squares version of the Prony
method, and some modes are repeated modes. Then the equation Vg = y is solved using Rz = Q*y.

Introduction’

The problem of fitting theoretical exponential modes to ex-
perimental data has several applications in signal processing.
Such a problem arises in transfer function identification in lin-
ear systems, in channel identification for comrmunications, in
direction of arrival estimation for radars, and in the study of
oscillations on power lines. The data model consists of a linear
combination of several damped or undamped exponentials in
additive white noise:

n
y,:Zc,-zf+n, t=0,1,...,m.
=0 .

i This model corresponds to a noisy impulse response of a ratio-
nal discrete linear system H(z) = B(z)/A(z), with

Az) = H(l —z;z7h).
i=0

The estimation of the exponential model is equivalent to esti-
mating a rational system from its noisy impulse response. The
difference between the two system identification procedures lies
in the choice of the parameter set.

In 1795, Prony [1] developed a two step procedure for solving
the noise free case. His method was based on the computation
cof the linear prediction polynomial A(z) that anihilates the
data. The roots of the polynomial are equal to the modes
{z:}7 ¢, 2nd the linear coefficients {ei}, are then obtained
by solving a system of linear equations defined by a column
Vandermonde matrix V containing the identified modes.

. We focus our attention on the second step of the Prony
;method. In the case m = n, the algorithm of Bjork and Pereyra
i[4] may be used to solve the square linear system for the linear
icoeflicients. If some modes are repeated, then the algorithms
‘of Bjork and Elfving [10] or Galimberti and Pereyra 11] may
ibe used. If m > n, a least squares solution for the coefficients
{¢:}7 o is computed by solving the normal equations, based on
ja Hilbert type matrix H = V*V, which is the Grammian of
{the Vandermonde matrix V. These normal equations are usu-
‘ally solved implicitly using the QR factorization of the original
!matrix V. The QR factorization of V is preferred over the Cho-
lesky factorization of H to compute the solution, as it leads to

ibetter numerical properties. We developped a fast algorithm
to perform this factorization, by taking advantage of the very
ispecial structure of the Vandermonde matrix and its Gram-
jmian. A fast algorithm for the Cholesky factorization of H~?
lis first derived using the technique of Heinig and Rost [5]. This
lalgorithm is then used to derive an algorithm for the matrix
IQ in the QR factorization. We obtained a vector algorithm
lthat saves an order of magnitude in the computation count
!when compared to standard QR factorization algorithms such
las Gram-Schmidt, Householder or Givens |9].

In this paper we present a variant on the original method to
‘account for the possible case where mode have a multiplicity
greater than one.

The following diagram illustrates several connections be-
itween the various matrix factorizations that we shall exploit
lin our development of fast algorithms. It also establishes our
inotation:

V = QEB* = ) VA=QE
U (3
H = BX?B* = H-1 = A2 4~
N Ve
. |HA=B%?|=V*Qx
(1) ?
4
®) V*Q = BY

In this diagram and throughout this paper, QT denotes the

transpose of @, Q denotes its complex conjugate and Q* = Q" .
In the first line of the diagram, the equation V = QX B* defines
the block QR factors of V. The block upper triangular matrix
B* is defined with identity block diagonal elements, and the
block diagonal matrix ¥ contains positive definite blocks. Just
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beside this equation, the equation VA = QX defines the QR
factors of V in an inverse form. The matrix A in this equa-
tion is block upper triangular, with B* == A~!. The equation
A*HA = %% defines the inverse Cholesky factors of the Gram-
mian H, and the equation H = BY?B* defines its direct Cho-
lesky factors. The third line of the diagram shows factors of
the Grammian that mix variables from the inverse Cholesky,
the QR and the direct Cholesky factors. The last line explicitly
shows the block triangular correlation between the columns of
1 and those of Q. The numbers (1) ,(2) and (3) beside the
equations in boxes correspond to the three fundamental equa-
tions that we use to derive algorithms, in the order we use
them.

I. Confluent Complex Vandermonde Matrices

In the linear prediction model, nothing is done to enforce
the uniqueness of the modes, so that the linear prediction
polynomial may have multiple roots. In that case the asso-
ciated column Vandermonde matrix is rank deficient. In the
z-transform domain, the model then contains terms of the form
(1-227%)"7, where j = 1,...,7i, and ; is the multiplicity of
the mode z;. Note that a multiplicity equal to two is equivalent
to a time series equal to (k +1)z¥, a multiplicity equal to three
to a series equal to (k + 1)(k + 2)2¥/2, etc. Thus we introduce

the jth derivative of a Vandermonde column:

VO (2 - {1' 'ﬂ‘f(ﬁ)}
k

3 dz!

(o 1<k <
TGN 1<k <m

The factor 1/5! has been added for later convinience.

We will consider here only the Hermite type of confluent
Vandermonde matrices, or in other words a type of confluent
Vandermonde matrix where if the column corresponding to the

jth derivative is contained in the matrix then all the previous
derivatives are also contained in the matrix. This case corre-
sponds to our problem. Define v; as the multiplicity of the
mode z;, then the matrix contains v; columns with z;, so that
derivatives up to the order v; — 1 are used for the mode 2;.

For example, take the case with two modes with multiplicity

71 = 1, and 7, = 3, then the confluent Vandermonde matrix
looks like:
ri 1 0 0 7
21 22 1 0
22 22 2z 1
v |z 2 32 3z
2d 2z} 42} 62l

4 3
2y zy bz 102

The name of Hermite comes from the associated interpola-
tion problem V7Tz =y, where V is a square confluent Vander-
monde matrix, and y contains the values of a function f and
its corresponding derivatives (when the multiplicity is greater
than one) at the modes z;. Then the components in the solution
vector g correspond to the coefficients of the unique polynomial
that interpolates the function and its derivatives at the points
z;. The direct system V& = y comes from the computation of a
linear function on these polynomial coefficients. If the system
is overdetermined, a least squares solution is usually computed
with a QR factorization of V. To compute such a factorization
while using the structure of the confluent Vandermonde matrix
V is the subject of this paper.

II. Background

Given the p modes {z;}7_,, with respective multiplicity v;,
build the (m + 1) by n confluent Vandermonde matrix V with

r
n= Z‘y,’.
=1

Using the previous example, with 7 = 2, and n = 4 then

r 1 1 0 0
Z 22 1 0
zf z% 229 1
V= z? zg 32% 3z,
zd 423 622
;n m m—1 m{m-1) m-2
Lz[* 28 maz, 2y J

We suppose that m > n. If m = n, the algorithm of Bjork and
Elfving [10] or Galimberti and Pereyra [11] may be used to
solve a square system of linear equations involving the matrix
V, or its transpose.

We say that V contains p block columns (each containing
the mode z;), and define its block QR factorization V = QEB*
where Q is unitary (Q*Q = I), B is block lower triangular with
identity diagonal blocks, and % is a block diagonal matrix with
positive definite diagonal blocks. The size of each block corre-
sponds to the multiplicity of the corresponding mode. In our
example, ¥ contains two square blocks of respective dimension
1 and 3.

The Grammian of V is the matrix H = V*V, where H =
{H:,;30 ;=1 Hij is obtained as the the inner product between
the corresponding block columns of V. Note that the deriva-
tive columns lead to inner products that can be computed as
the derivative of the inner products. For example, the inner

product between the %th derivative column of z; and the ith
derivative column of z; is given by:

. 1 dk & 1 - -z-:n—H Z;n-H
kit = <m) d—E? g?; 1—-2;z5

Note that if Z;z; = 1, this formula cannot be applied but geo-
metric formulas may be substituted.
The matrix B is the block Cholesky factor of H as
H=V*V =BrQ*QsB" = BX*B*
Similarly, the block UL factorization of H~! is defined to be:
H!'=A%"%4" or A'HA=Y?

where 4 = B~* is an upper triangular matrix with identity

diagonal components.

1II. Inverse Block Cholesky Factors of the Grammian
The reduction technique of Heinig and Rost (5] may be used

to reduce the matrix V:

VD - ZTV = [0,...,0,1) T[], (m + 1)z, . )T = em(F1)T
The vector f! corresponds to the transpose of the row that
would be added to V on its bottom if m was replaced by m+1,

and ey, is the mt® column of the identity matrix. Using our
example, then

Pt (m o 1)eg mim 4 1)/2207)T

D is a block diagonal matrix with D = Diag {dy,...,d,], where
d; is a square upper triangular matrix of size ; and

di = 24, ify; =1,
T ziI—I—ZT, if’)’i>1.
In our example, D is
22 1 0
D =Diag [z1,| 0 2o 1
0 0 Z3
Similarly, we have the difference equation
VD —2zZV =[1,0,...,0]T[2;%, ..., (~1)" 7 L ]
= ~e19;

In our example, g* is given by
g =N 5w
Together these reductions on V lead to the following reduction
of H
HD-D*H :gl(f])T +g2(f2)T

The vectors g2 and f! are defined as before, g' is the Hermitian
transpose of the last row of V and f2? is the transpose of the
first row of V. In our example, we have f2 = [1,1,0,0]7,



ooy M{m =1
gl—.:[z;",ZZ,mzz 17(—2—2

Define H; to be the leading submatrix of H of dimension
Qi by Q, where Qy is defined as the partial sum:

k
O = Z%’
=1

Then, ag, the block vector containing the Qi non-zero compo-

E;n——2]T

nents of the kB block column of A, is given by the equation
Hiap = lkai

where I = [0,...,0,I]7, is a block vector of dimension 0} by
~k. Due to the structure of H, we also have the equation

Hipap = Hgﬁk = Hiay = ot

Note that ai(?) is a block of dimension ~; by 7. V is full col-
umn rank, therefore H is strongly regular, meaning all of its
leading block submatrices Hy are invertible matrices. Simi-
larly, define the vectors ¢i and ¥i of length Q4 as

Hi¢i =g, and Hiyi=Hipi=fi for i=1,2.
gi (fi) contains the first x components of g' (f*). The dif-
ference equation is still valid for the leading submatrices, and
we can write

HyDy - D" Hi = gil(fD) + gi(£0)"
where Dy is the leading submatrix of D that contains the first

k blocks, its dimension is 4. Multiply this equation by Hk_]
on both sides to get

Dy H; - B'DP* = ()" + 4i(v0)”
Applying this equation to lx, we have

2
Draroy” - oy *d" = 3 $ilwi)”
i=1

where wi is a vector of length i that contains the last v

components of 9} . If ay, is known, the updates for the auxiliary
vectors are given by:

, i . . i ,
R R S I S A Y

In these two equations the vector 0 contains v zero compo-
nents. These equations follow directly from the difference equa-
tion and the definitions of uj and v}:

k-1
wi = g' (k) — Y Hi;6%-1())

j=0
. . k.—l .
vi = fi(k) = Y HE i1 (5)
3=0

where g*(k) and fi(k) are vectors of vx components, and Hy,;
is a block of dimension v, by v;. ¢i(j) and pi(j) are vectors
of length ~;. The last v; components of #% and 9 (equal to
$i(k) and ¥} (k) respectively) are then equal to

wi = ot = 9i(k)  wp =0 = (k)
The last v; equations in the system for ax leads then to the
following equation for o

2
oty - 4ot = S i)
i=1
which is easily solved for each component in the Hermitian
symmetric matrix of by starting with the bottom left compo-

nent and going back up along diagonals. The equation for o}
is of the type AX — X B = C, which has a unique solution for
X as long as the eigenvalues of A and B are distinct. In our
case, the eigenvalues of dj are all equal to z; so that as long
;as |zx| # 1, the solution for o will be unique.

For exa.mplé, if 4% = 2 then

=—1 =2
a: 2 1| |7, —zk] o = | ™11 ™12
0 2z 0 3z BT may map

with

2 N
Ty - m m
0-125 — |: l,2j| and § u;c(l/;:)T _ [ 1,1 1,2‘\
i=1

Z2.1 T2 ma1 M22

z, is readily obtained as z; = mg1/(2k — Z5 '), which in
turn gives

Ty = (may — 25 22,)/ (26 — %)
o2 = (map2 — 22)/ (26 — %)

and finally ¢, 5 = (my,1 — 21 — 27 222)/ (2 — 23 )-
The final equation for aj is oﬁtained by using the updates
for the auxiliary vector in the equation for ax to get

2 .
Dyay, — dpdy = 2; [45121—1} vi)*
==

which can be solved for each component in a; using the same
method as for a,zc. Note that the last block of ax may not be
obtained but is known to be equal to the identity block.

If Zizr = 1, the equation for ¢ does not have a unique
solution and an alternative way to compute this matrix is to

use
k

op = Hex + E Hy jax(7)

i=1

The recursions are initialized by ay(1) = I, ¢} = H; 1, and for
1=1,2:

¢i(1) = Hi1g'(1) and  ¢i(1) = Hy) f(0).

IV. Block Orthogonalization
Given the matrix 4, and using the equation VA = Q%, we

can write out the kth block column g of the orthogonal matrix

Q as
V[

Extend the block vectors in the recursions for ay with zeros to
have length n, and multiply the equation by V to obtain:

2
G i i
VD [ 0 ] - qrogdy = Zal-z(Vk)T
=1
where we defined the vectors ai by

aizV[%’“} for 1=1,2.

Using the difference equation for VD, we can write

2
ZTqrok — qeordi = Zai_,(u,’;)T — emék

i=1
where
& = (f8) e = (F1)THL Lo

= (1) o} = (wi) o = ()7
The inner products defining pi and v} may be replaced by
vi = Fi(k) = Vi By
where the vectors ﬂ,’c, for 7 = 1,2, are defined by

iy Jk
i [ 0 ]

The updates for the vectors ai and §; are then given by:

i = g (k) = Ve,

ok = oh 1 + GOy Kk
Bi = By + x0T
This means that we can compute the matrix @ without car-
rying the computation for the matrix A. The multiplier of
:may be computed as before when Zxz; # 1, otherwise it may

be obtained using the relation V*qr = ok, which comes from
the equation V*Q = BZX. The recursions are initialized by

i”% =Hyy, ¢ = Vioy', and for i =1,2:

for ¢=1,2.

| o =VH{1g(1) and B =VEIFQ).

‘ V. Cholesky Factors of the Grammian
Given the matrix @, we can write out the kB block column
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by, of the lower block triangular matrix B as
170 % [‘ﬂ = V*qroy = bgo?

Multiplying the recursion for g; on the left by V*, we have
2
V' ZTqeor — brojdi = Y i, (vi)T - ¢'(uh)”
i=1

where the vectors ri are defined by

o= V*ad :V"'V{%’“} for =1,2.

Using the structure of V*, we can write

2
D™"byap - beajdi = Y vk ()T — g ()T — oPpr
i=1
where

T T
Pk = €1 qr0k = €1V

0

ak} = ()

= (#”i)THkak = (wlzc)TUi = (VE)T

The inner products defining ui and v{ may be replaced by
#i = gi(k) - Ll,lc*a;-c—l = gi(k) - T;‘cq(k)
vi = f1(k) = VT Broy = fi(k) — 5 (k)
where the vectors si are defined for 7 = 1,2 by
=V =Y m

The updates for the vectors r} and s} are given for i = 1,2 by:

ri = 7';-;71 + Iiibk and .si e s};_] + E};bk.
The recursions may be simplified, using the following defini-
tions: :

i =¢' —ri and i :?z—s; for i1=1,2.
so that the multipliers are given by:
pp =z y(k) and vi=7L (k) for i=1,2.
The equation for by is then simplified into
2
D™"broj — brojdi = — Y wi_y (i)
i=1

The updates for z and yi are given for i = 1,2 by

and yi = y};_l - T/ibk

The components in the matrix ¥ may be computed when
Zrzk # 1, as before, otherwise if Zx 2, = 1, we use the fact that
br(k) = I so that

i i i
T = Tioy ~ Hibr

k—1
Hip = of + 3 bj(k)o2b3(k)

=1

to get an alternative formula for o?. The recursions are initial-
ized by 0 = H; 1,

bi(j) = Hj 07%  for

andfori=1,2and j=1,..,n:

=1(7) = 9'0) - b()g' (1) %) = F () - b()F (1)
Note that this algorithm is perfectly vectorizable as it does not
require any inner product, as long as the modes (z;) do not lie
on the unit circle.

VI. Complete QR Factorization

A complete algorithm for computing the QR factorization
of the confluent Vandermonde matrix V' is given by using the
recursions for ¢ and by together, and eliminating the unnec-
essary variables. The algorithm produces the block matri-
ces Q, B and T, where V = QEB* = QR, or equivalently
B=R3%1,

7=0,..,n.

Algorithm : Given the confluent Vandermonde matrix V,
its QR factorization V = QX B*, may be computed in the
following way:

1. Initialize:

(7% = HI,]

Forj=1,..,n: b5)=Hji0;%, »

Fori=1,2and j=1,..,m: fi(j) = f()V(i)H;]

Fort=1,2and 3 =2,...,n:

21(7) = ¢'(5) - ba(3)g*(1)
2. Loopon k =2,...n:
For:=1,2: pi =2} ,(k),and v} = yi_ (k).
If |2] # 1, then solve for of in the equation

vi) = FG) - b(G)F Q)

2
oldy ~ di7ol = 3 pi ()T,
=1
otherwise set
k-1
of = Hip — > bi(k)olb;(k).
j=1

Backsolve for the components of g; in

2
ZTqkon — grorde = Y oh 1 (1})T - em(v)7-
i=1
be(k) = I, and for j = k + 1,...,n, solve for b(j) in
2
d;"be(f)of — b(i)otde = Y 2k 1 (5)1h)7
i=1

Fori=1,2andj=%k+1,...,n:
2 (3) = 2hor (7) — mibe(d),
Ui (3) = vioa () = wibe(d).

Fori=1,2: 8, =6} _, + qka,:]ﬂ;c.

Note once more that the backsubstitution for g; is the only
step inside the main loop of the algorithm which is not vec-
torizable. o in this algorithm is usually taken as the upper
triangular matrix such that o2 = o7 oy.

Conclusion

In this paper, we derived an algorithm for computing the QR
factorization of a column confluent Vandermonde matrix. This
algorithm is an order of magnitude faster that conventional QR
factorization algorithms such as Gram-Schmidt, Householder
or Givens.
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