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RESUME

La Distribution Wigner-Ville a ete
utilisee comme un moyen de classification et d°’
analyse des methodes de modulation numerique. On a
calcule ces distributions dans les cas de PAM et
CPFSK en utilisant les representations complexes
en bande fondamentale. Les reliefs de
temps-frequence des signaux a modulation numerique
montrent des dependences marques en ce qui
concerne le type de modulation ainsi que sur ses
parametres. Ces reliefs ont ete parametre avec leg
fonctions Haar et un nombre limite de coefficients
Haar ont ete trouve suffisants pour mettre en
oeuvre une classification du type de modulation.

SUMMARY

The Vigner-Ville Distribution has been
investigated as a tool for the classification and
analysis of digital modulation schemes. Starting
form the complex baseband representation of
modulations, the WVD of PAM and - CPFSK have been
derived. The time-frequency reliefs of digitally
modulated signals show strong dependencies on the
type of modulation and upon the modulation
parameters for a specific type. These reliefs have
been further parametrized through Haar functions
and it has been found out that a few Haar
coefficients provide significant features for the
recognition of the type of modulation.
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1. INTRODUCTION

A modulation recognizer is a device for automatic
recognition of modulation type of a signal. The infor-—
mation on modulation type of a signal serves as a
parameter in signal sorting activities. For example,
combined with other parameters such as the signal
strength and the angle of arrival the output of each
emitter can be catalogued, which in turn may start a
series of control functions. Typical applications for
modulation recognition and signal classification arise
in surveillance, monitoring and reconnaissance of
threats in the military context.

A classification algorithm must be based on stochastic
models of modulated signals and their easily quantifi-
able parameters. Modulated signal processes are not
however inherently stationary, since sampling and mo-
dulation operations induce cyclostationary behavior.
Stationary models with time-invariant parameters cannot
provide an exact representation of such processes. Time
frequency representations with some time dependent
probabilistic parameters can therefore provide more
detailed information on the evolution of time-frequency
reliefs, on the instantaneous frequency and group delay
characteristics and on the hidden periodicities.

In this study the Wigner-Ville Distribution (WVD) is
used as a joint time-frequency representation to gain
insight into digital modulation types, such as PAM and
CPFSK and to obtain an automatic recognition algorithm
based on the parametrization of the time-frequency
reliefs,

II. PROPERTIES of WVD

The WVD of a stochastic process x(t) with sample func—
tion X(t) 1s defined as [1]:

wx(t,f)=E{wX(t,f)}=_f: E{X(e+1/2)X¥(t~1/2) Jexp (—~i2nfT)dT

Several requirements can be imposed on the definition
of a joint time-frequency representation (2], such as
realness, positivity, shift-invariance both with re-
spect to time and frequency, preservation of the time
and frequency supports, effects of linear systems that
result in convolution type relationships, time and
frequency profiles of the relief that match, respec—
tively, the magnitude square and the power spectrum of
the signal etc.. Although there exist several defini-
tions of joint time-frequency reliefs, the WVD is the
most consistent one in that it satisfies the largest
number of properties provided the positivity con-—
straint is relaxed. Although one thus foregoes point-
wise energy interpretation, strictly non-negative
values can be obtained by integrating the reliefs over
an uncertainty ellipse. In the respect the WVD has the
smallest uncertainty ellipse.

In the context of modulation study, the two relevant
properties of WVD are given below:

a) Under time-shifting and modulation operations, the
WVD is, respectively, time and frequency shifted,
i.e., for x(t~ty)exp(i2mf,t), one has Wy(t-ty,f-fy).
As a consequence, in the study of modulation schemes,

it will suffice to consider only the complex base—
band signal.

b) If a signal has a finite time-bandwidth or finite
frequency bandwidth, then the WVD is also confined
to the same support, i.e., if

x(t) =0 t£T then Wx(t,f)=0 for t#¢T

X(£) =0 t#¢B then Wx(t,f) =0 for f¢B
Thus it will suffice to confine the reliefs to a

symbol interval.

III. WVD of DIGITAL MODULATION PROCESSES

It is conjectured that the time-frequency representa-
tions obtained through WVD of digitally modulated pro-
cesses will be a usefull tool for the study of band-—
pass nonlinearities, for the extraction of timing in-
formation and for the identification of features for
the differentiation between modulation types.

It will be convenient to represent the output of a
modulator as

s(t) =Re{u(t)exp(i2ﬂfct)}

where s(t) is the bandpass modulated signal and u(t)
is the complex baseband modulating waveform. It is
possible to accommadate all digital modulation types
in this formalism [4]. For example for PAM (pulse
amplitude modulation) one has

u(t) =§ Ing(t-nT)

where I, is the information sequence, T is the symbol
period and g(t) is the basic pulse waveform; for the
case of CPFSK (ceontinucus phase frequency shift keying
one has

u(t) = Loexp[jd +jwy(o, T+ (£-nT)I,) ] g(t-nT)
n=0 d\Yn n

where ¢ is a uniformly distributed initial phase of
the carrier, fg is called the peak frequency deviation,
n-1

g(t) is a rectangular pulse and o= I, L

= 2o T representing

the accumulation of all symbols up to time (n-1)T.

It should be pointed out that digitally modulated
signals are cyclostationary processes with symbol
period T, that is, their autocorrelation functions
are periodic, Ry(t,u) =Ry(t+T,u+T). The WVD reflects
this cyclostationary nature, in that it becomes peri-—
odic in t when the input is a cyclostationary signal.
WVD of PAM:

For the PAM signal represented as x(t) =1,g(t-nT)
where {In} is a wide-sense stationary sequence with
autocorrelation function yi{n-m) the WVD becomes

Wy(t,£) =22 Yo (a-m) [g(t+1/2-nT)g* (t—1/2-uT)
nm

exp(-1i2wfrddT

which becomes

1 T T
W, (t,£)=0.500 (£)=0(f =55 ) IW (£ =5, £)+Wg(t+ 5,£)]

+0.500, (£)+h; (£ =5 )1 Wg (£, E)

where ¢7(f) is the power spectral density of the se-
quence In}. For the case of binary symmgt;ic signall-
ing (BSS), i.e., I, =%1 each with probability 1/2, the
WVD of PAM reduces to the WVD of the pulse waveform,
ioe., Wult,f) =Wy(t,f), It[ <T/2 and the results for
the on—off signa%ling (008), i.e., I;=0 and 1 eac.:h
with probability 1/2, are illustrated in Fig.2. Flg.l
displays the WVD of PAM with BSS and pulse duration
d=T/2 in the time-frequency plane [f‘ <4/T and
-0.5T<t <1.5T. One can notice the periodic nature of
WVD; also that the energy distribution evolves in time
with a peak at DC frequemcy. Fig.2 illustrates the WVD
of PAM with 00S which shows ridges along f£=tk/2T, which
may be potentially used to extract timing information.
Notice that the ridges along the time direction toward
the two ends of the signalling interval become negative;
since positivity can not be guaranteed for the WVD.
The isoplanarsfor the first relief is shown in Fig.3
which indicates a distinct orientation of the contours
along the frequency axis centered at t =kT.



WVD of CPFSK:
The WVD of CPFSK can be calculated starting from
0
wX(t,f) =jw rx(t,T)exp(-iZHfT)dT
where
ro(t,1) = Eer.  (£,T)a(t+ % -nT)g*(t -L -nT)
X+ n=0"n,n" ’ 2 2

T T (e,ma(e+ L ~aT)g¥(t - % —u)
n=1 n,m" "’ 2 2

m=0
o m-l T
. Xep X _
+m__Z_1 néorn,m(t"r)g(t+2 nT)g™ (e 2 wT)

where

Ty (6 DElexp Gy (o o ) Dexp jwy (430D

~(t-5-uDI )]}

and for te(KT,(K+1)T] can be expressed as

Wx(t,f) = [:wg(t—KT,u)¢(f-u)du+2Re{A(K,f)B(K;t+ %)

-j2mfT

+ $(T)e AR, )B(K, £)+A(K+1, DB(K,t =)

where

-j2mfr

() =E{ejwdTIn} and ¢(u) =[: P(T)e dt

A(K,£) = [¢2K(T)e"j2T\'fT(2K)_l] / [¢2 (T)e—jh’n‘fT—]_]

o)

-j2muT
BK,E) = J,, W, (e-KT,wW 1=

(t=KT -1 du

> , f-u)e

¢

Figures 4-7 illustrate respectively, the reliefs and
isoplanars for binary CPFSK with h=0,3 and h=0.7
(h=2ﬂde). It can be seen that these isoplanars show
symmetry along the t-axis in contrast to the PAM case.
Furthermore the reliefs show substantial changes with
varying h parameter. For example, the persistent ridge
for all time along the center frequency is evident
especially for the small deviation case. For larger h
values, e.g., h=0.7 the frequency sidelobes become
prominent and the interference terms cause various un-—
dulations on the relief.

IV. AUTOMATIC MODULATION RECOGNITION

The reliefs and isoplanars shown in Figs. 1 to 7
display localized lobes and predictable orientation.
Hear functions have been chosen to parametrize these

reliefs to obtain significant features and to implement
modulation recognition. Haar functions have in fact the

ability to represent a given function with few consti-
tuent terms to a high degree of accuracy and they have
been successfully applied to picture data compression.
In particular one can note that (H(i,j),i,j=1,...,N,
representing the (i,j)th Haar coefficient):

i) H(1,1) gives the total signal energy in the signall-

ing interval T.

ii) H(1,1)'s and H(i,1)'s are sensitive to symmetries
respectively in f and t.

iii) As a result of (ii), the differences in the orien-
tation of the WVD contours of PAM and CPFSK can be quan-

titatively described by the Haar coefficients H(1,1i)
and H(i,1), i=1l,...,N. In Table 1, this can be seen
comparing the normalized Haar coefficients H(1,4),
H(4,1), H(1,7) and H(7,1) of PAM and CPFSK.

iv) H(i,1), e.g., i=3 or 4 can detect the lobes along
the frequency direction, as occur in CPFSK. The strong
variation of Haar coefficients with the h-parameter as
in Fig.8 is also an indication that these coefficients
can be used to estimate the frequency deviation para-
meter in CPFSK.

Figures 9-11 display the Haar coefficients H(i,j),
i,j=1,...,8 obtained from the WVD of PAM and CPFSK
with h=0.3 and h=0.7.

IV. CONCLUSION

Preliminary studies have shown that the Wigner-ville
reliefs of digitally modulated signals show substan-
tial dependence upon the type of modulation and upon
the modulation parameters for a specific type. This
dependence has been used as the basis for modulation
type recognition by using two dimensional Haar func~
tions as features. PAM with symmetric and on-off pul~
sing and CPFSK with various values of h have been
classified by using a few Haar coefficients, e.g.,
H(1,4), H(4,1). It remains to study the performance
of this digital modulation classifier under noisy
conditions and to consider as well practical implemen-
tation aspects, such obtaining Haar feature vectors
directly from measured signal.
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Table-1:

H(1,4) H(1,7) H(4,1) H(7,1)
PAM (d=0.5T) 100 95 3 1
PAM (d=0.3T) 50 100 0 0
2-CPFSK (h=0.3) 1 0 59 100
2-CPFSK (h=0.5) 1 0 100 51
2-CPFSK (h=0.7) -7 -2 41 ~4
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Figure-1l: The WVD of PAM with BSS (d=T/2).
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Figure-3: The isoplanars of the WVD of PAM with
BSS (d=T/2).
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Figure~4: The WVD of 2-CPFSK with h=0.3.
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Figure-5: The WVD of 2~CPFSK with h=0.7.

Figure-6: The isoplanars of the WVD of 2-CPFSK

"with h=0,3.

Figure-7: The isoplanars of the WVD of 2-CPFSK

with h=0.7.



Figure-9: The isoplanars of Haar coefficients of

the WVD for PAM with BSS (N=8),
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Figure-10: The isoplanars of Haar coefficients of
the WVD for 2-CPFSK with h=0.3.
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Figure-1l: Thé isoplanars of Haar coefficients of
the WVD for 2-CPFSK with h=0.7.
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