DOUZIEME COLLOQUE GRETSI - JUAN-LES-PINS 12 AU 16 JUIN 1989

o)
=

A FAST PROBABILISTIC MEDIAN ALGORITHM
FOR INTEGER ARITHMETICS

Kari-Pekka Estola and Risto Suoranta

Machine Automation Laboratory, Technical Research Centre of Finland
P.O. Box 192, SF-33101 Tampere, Finland, Tel +35831-163602, Fax +358-31-163494

Ce papier introduit une nouvelle méthode pour calculer la médiane mouvante d’une fagon efficace. Le cas le plus mauvais de
complexité du filtre proposé pour la médiane mouvante est de I'ordre d’ O(L), c.a.d linéairement proportionnel & la longueur
de mot L. La complexité de la médiane mouvante ne dépend pas du nombre d’exemplaires inclus dans le calcul de médiane.
Aussi, le nombre des placements de mémoire requis pour calculer la médiane est bas, étant de I’ordre de 2L+! au pis. De
plus, la structure de de contréle du nouveau filtre de médiane est simple et facile & mettre en application dans la VLSL
L’algorithme se base sur I’estimation multiresolutionnelle de I’histogramme mouvant. Ainsi ’algorithme proposé peut étre
utilisé pour trourer plusieurs pourcentiles et pour estimes des modes et d’autres paramétres de données. Parce que la fenétre
mouvante peut &tre arbitrairement longue, la variation d’estimations pour les paurcentiles peut étre basse. L’algorithme
élémentaire donné dans ce papier fait les calculs pour la médiane et autres pourcentiles exactement, mais Palgorithme peut
aussi étre utilisé & calculer les approximations des vraies valeurs.

In this paper, we introduce a new method for computing the moving median efficiently. The worst case complexity of
the proposed moving median filter is of order O(L), i.e. linearly proportional to the wordlength L. The complexity of
the moving median does not depend on the number of samples included in the median computation. Also, the number of
memory locations required for computing the median is low being at worst of order 2L+1. Furthermore, the control structure
of the new median filter is very simple and it is easily implementable in VLSI. The algorithm is based on the multiresolution
estimation of the moving histogram. Thus, the proposed algorithm can be used to find various percentiles and to estimate
modes and other parameters of the data. Because the size of the moving window can be arbitrary long, the variance of
the estimates to the percentiles can be made low. The basic algorithm given in the paper computes the median and other

percentiles exactly but the algorithm can be also used to compute approximations to the true values.

1 Introduction

Median filtering has been widely used in digital image and
signal processing for data smoothing and noise rejection. Al-
though the median operation is nonlinear, theoretical stud-
ies and experiments have revealed some of its fundamental
properties which are valuable in data processing. Median
operation is attractive in applications where we want to fil-
ter noise from signals and sharp discontinuites have to be
preserved.

The computational complexity of median filters, however,
increases rapidly along the number of data samples included
in the median operation. Typically the computational com-
plexity of sorting N samples is O(N log N). In image and
signal processing, the computational complexity can be re-
duced using moving median filters which compute the me-
dian within a window of N samples which is sliding over
the data points. The reduction in the required number of
arithmetic operations is due to the fact that the windows
are overlapping and thus the data within the next window
position is already partially sorted in the previous median
operations. In the past years, several authors have devel-
oped fast methods for computing the median in real-time
image and signal processing applications (see e.g. {1,2]).

In this paper, we introduce a new method for computing
the moving median efficiently. The proposed method takes

advantage of the finite wordlength representation of the dig-
italized stream of continuous data as the methods described
n [1,2]. The complexity of the resulting median algorithm
does not depend on the number of samples included in the
median operation, but on the number of bits L used in rep-
resenting the samples. Moreover, the worst case complexity
of the proposed moving median filter is of order O(L), i.e.
linearly proportional to the wordlength L. Also, the num-
ber of memory locations required for computing the median
is low being at worst of order 2£*+!. The proposed mov-
ing median filter can be viewed as a generalization of the
reference methods (see [1,2]). The main difference between
the reference methods and the proposed multiresolution his-
togram method is the use of the hierarchical variable depth
tree structure in sorting the data. This approach results in
an extremely fast median filter being faster than for exam-
ple the radix method of Ataman et al.. Furthermore, the
control structure of the new median filter is very simple and
thus it is easily implementable in VLSI.

The basic algorithm given in the paper computes the me-
dian and other percentiles exactly but the algorithm can be
also used to compute approximations to the true percentiles.
This can be done simply by decreasing the number of bits
in representing the data samples within the tree structrure.
The computation of the approximate percentiles is faster
than the exact percentiles because the effective depth of the

62

tree is reduced. It is shown in the paper that the num-
ber of required memory locations can be further reduced by
weighting the depth of the tree according to the number of
samples in the nodes. The weighting can based either on a
priori knowledge or adaptive estimation of the data. In this
case the accuracy of the obtained percentiles depends on
the estimated probability density function. The estimation
of the probability density function with a multiresolution
histogram is built in the basic algorithm and thus it does
not require any additional computation.

This paper discusses both the theoretical and practical
aspects of the proposed multiresolution histogram method
and performance comparisons are made with other existing
algorithms.

2 Basic Algorithm

This section describes the new algorithm for computing var-
ious percentiles of integer data. The succeeding sections
discuss the performance of the multiresolution histogram
method.

In digital image and signal processing the data represent-
ing continuous time world is sampled using analog-to-digital
converters. For most applications, it suffices to represent
the discretized data with L = 12 or L = 16 bits. In many
cases, the data processing hardware uses fixed-point arith-
metics although floating-point processors are becoming pop-
ular. Hence the algorithms manipulating the integer data
can be designed to exploit the finite wordlength represen-
tation. This approach is especially useful in designing fast
algorithms for finding various percentiles of the data in a
moving window.

The proposed algorithm for finding various percentiles is
based on the multiresolution estimation of the histogram of
the data in a specified window of the length M. The esti-
mated multiresolution histogram forms an n-ary tree having
L/d levels excluding the root. The relation between n and
d is d = log, n. Thus, the total number of memory elements
R needed for the nodes excluding the root is

L/d-1

R= Y 2f¥ (1)

k=0

The number of memory elements increases with decreasing
d such that the maximum R, = 25+! —2 is obtained with
the binary tree, i.e. d = 1. Figure 1 illustrates an n-ary tree
withn=4,d=2and L = 8.

Because the extent of the window limits the number of
data samples to M for the estimation of the multiresolution
histogram, the tree contains also exactly M data samples.
The tree is implemented is such a way that each node in
the tree contains the total number of the data samples in its
descendants. Thus the nodes at a certain level comprise the
histogram estimate. The histogram at that level is quantized
with ilev - d bits, where ilev is the specified level.

As the window slides over the data the contents of the
nodes are updated. This is accomplished by incrementing
the contents by one for the new sample and decrementing
the contents by one for the outgoing sample. In order to
achieve a fast realization, the proposed approach uses the
values of the data samples as the addresses for the nodes to
be updated. Thus the data flow is controlled by the data

(L =8, d=2 => number of levels is L/d=4]

10011100
level 1

e %)
// \ level 2
Ciini)eee{ """ Y wux j-ooL 0000 }
leve|3
gimiiy . 100111 ()[}o o o (00000
/; :n level 4
(1117111) o o @ ((icoi1100) ses {00000000)

Figure 1: An example of the n-ary tree for the multiresolu-
tion histogram.

itself. The address for the node at the first level is the d
most significant bits of the data and at the second level the
2d most significant bits and so on.

The various percentiles can be computed efficiently using
the multiresolution histogram. The direction of the search
for the percentile is from the root towards the leaves. At
each level the search is performed from the lower addresses
towards the higher addresses. The search is done by sum-
ming the contents of the nodes and comparing the sum to
the value indicated by the specified percentile. When the
value is exceeded the search continues on the next lower
level. In the lowest level, the address of the node is the
searched percentile.

An approximation to the percentile is obtained by stop-
ping the search at an intermediate level ilev. The approx-
imate percentile corresponds to the percentile of the data
quantized to ilev - d bits. The computation of the approx-
imate percentile is faster than for the exact percentile be-
cause the search path is shorter.

The estimated multiresolution histogram can be exploited
in reducing the number of memory elements in the tree. In
this approach, the resolution of the data within the tree is
weighted according to the height of the histogram. This
method assumes that the data occuring in the modes of the
histogram should be preserved and the data falling inbe-
tween the modes is less important. In this case, fewer nodes
is used to store the data at the dips of the histogram. The
amount of memory saved depends on the level where the
tree is truncated. When the descendants of a node are re-
moved at level ilev, the number of saved memory elements
R,aye is N

Lja-1 _
Reave = 2 2L-kd; (2)

k=0

where L = L — ilev - d. The adjustment of the depth of the
tree can be done either based on the a priori knowledge of
the probability density function of the data or adaptively.

3 Computing the histogram

In the case of sampled data the probability density function
of the process from which the data is sampled is usually es-

f ™\
((INCREMENT/DECREMENT NODES)

(start)

v
inc=71

Xx=new sample
nlev=L/d
ilev=nlev

¥

BUFF,

ilev

{x) = BUFF,, (x) +inc '

}

x = shiftright d bits (x) I

ilev = ilev - 1

no

yes

end

- J

Figure 2: Flow control diagram for the tree maintenance
procedure.

timated using histogram h(n). In the histogram, the data
is grouped into K class intervals of width W and h(n) de-
scribes the frequency of samples falling in a specified interval
n. The width W and the number of intervals K are cho-
sen so that all possible samples belong to some interval in
h(n). In the case of fixed length integer data, the maximum
resolution is achieved by choosing the width W = 1.

In the proposed algorithm for computing various per-
centiles, the first task is to construct the multiresolution his-
togram. In the multiresolution histogram several histograms
are computed from the same set of data with different class
interval widths W. In the bottom level the width Wiiey = 1
corresponds to the maximum resolution. In the next level
Whtev—1 = 2% and, in general, Wiy can be computed ac-
cording to

Witey = 2(n1ev—ileu)~d, (3)

where ilev is the specified level of the histogram, nlev is
the number of levels in the multiresolution histogram. The
parameter d is determined by the ratio L/nlev = d, L being
the number of bits used to represent the data.

The histogram is computed from the set of M data points,
where the M is the length of the data window. When a new
sample arrives, it is included to the data set and the oldest
value is removed. A convenient way to handle the data set is
to store it in a ring buffer. Besides the data set maintenance,
the n-ary histogram tree structure must be updated for each
new data sample.

The tree updating has two phases: in the first phase,
the old value will be exported out of the tree and in the
second phase, the new value will be imported into the tree.
Removing a sample out of the tree means decrementing the

nodes by one at each level of the tree and adding a new
sample means incrementing the corresponding nodes by one.

Because of the simple structure of the tree, the index of
the node to be updated can be extracted easily from the
data itself. In the bottom level, the value of data sample
is the index of the corresponding node. The index in the
successive levels is obtained by shifting the previous level
index d bits right and forgetting the outshifted bits. In
the top level, the index is the d most significant bits of the
processed data sample. Figure 2 presents the control flow
diagram for the tree maintenance procedure.

Due to the low complexity operations and simple control
structure it is easy to implement efficient realizations for the
procedure.

4 Finding the percentiles

The percentile z, for the probability distribution function
p(z) is defined as

/ ’ p(z)dz = percentile. 4)

-0

Various percentiles have specific names; zp50 is the median
and zp25 is the lower quartile and so on. In the case of
sampled data the histogram is used to aproximate the prob-
ability density function of the given set of data. Using his-
togram, the definition of z, can be expressed as

By
Z h(n) > percentile - M, (5)

n=1

where M is the number of samples and the index n, is point-
ing to the interval enclosing the percentile z,.

For the fast computation of percentiles it is useful to have
only few intervals in the histogram, but for large W the his-
togram has a poor resolution. In the method proposed in
this paper we combine the benefits of low and high resolu-
tion histograms to find percentiles efficiently. The percentile
search is started from the top of the tree with the low res-
olution histogram; when the top level interval is found the
search is continued in the next level. Depending on which
level the search is stopped, different resolution estimates for
percentiles are obtained.

Figure 3 depicts the flow control diagram for percentile
search procedure. The length of the search path for some
z, depends besides on percentile itself but also on d chosen
for the histogram tree. If d = 1, the n-ary tree becomes the
binary tree. For the binary tree the search path is equal
long for all z,; in each level only one summing is needed to
decide the right interval for the current percentile. When
d is increased, fewer levels in the tree is needed but more
summing has to be done before the right node is reached.

Figure 4 shows three curves describing the number of op-
erations needed to update the histogram and to find a cer-
tain node on the bottom level. The worst case situation is
in the end of the curves corresponding to the percentile ly-
ing in the last histogram interval. From the curves we can
see that the most efficient percentile search is achieved by
choosing d = 2. It is also seen that for d = 1,2 the curves
are quite flat, i.e. not much improvement is achieved by
starting the search from a specific upper level node.

64

(SEARCH PERCENTILE_)

sum = tsum
i=1i+1
tsum = tsum + BUFFev (iind+i)

no P
yes
tsum = sum
INDp=iind + i
" e e ad
jiind = iind * 2

no
last level ? y———

yes

\. J

Figure 3: Flow control diagram for the percentile search.

5 Comparisons

This section compares the performance of the proposed mul-
tiresolution histogram method with the histogram method of
Huang et al. and the radix method of Ataman et al. in com-
puting the moving median. ;

The main difference is that the proposed method has a
variable depth tree structure whereas the reference meth-
ods use fixed data structures. Another notable difference is
that the reference methods use more complex methods in
computing or keeping track of the median. It also’ seems
that the computation of more than one percentile degrades
the performance of the reference methods more than that of
the proposed method.

Table 1 depicts the number of operations involving mem-
ory increments and decrements, and comparisons. The
equation giving the number of operations per computed me-
dian in the worst case is for the method of Huang et al

Oy =2F +4¢9 -1, (6)
and for the method of Ataman et al.
Oa=L(4g +1), (7)

and for the proposed method
L oa
Op =—(2%+2¢-1). (8)

In the above equations g is the decimation ratio between the
ingoing samples and the outcoming medians.

Table 1 shows that the proposed method is superior to the
reference methods in terms of the computation complexity.
The multiresolution histogram method is twice as good as

number of operations

0 350 100 150 200 250 300

index of the bottom level node

Figure 4: Number of operations for updating the histogram
and finding a certain bottom level node; d = 1,2,4 and
L =8.

method g=1 | g=5
Histogram |
Radix

Proposed
d=1
d=2
d=4
d=8

q=10 | q=20 || memory

Table 1: Performance comparison (L = 8).

the radix method for ¢ = 1 and becomes even better as the
decimation ratio ¢ increases being approximately six times
better for ¢ = 20. The required number of memory elements
is, however, somewhat higher for the proposed method at
small values of d but at large values of d the difference is
insignificant. Interestingly, the histogram method of Huang
et al. is also better than the radix method for high values
of q.

6 References

[1] T.S.Huang, G.T.Yang,and G.Y. Tang, ” A Fast Two-
Dimensional Median Filtering Algorithm,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. ASSP-27, pp. 13-
18, Feb., 1979.

[2] E. Ataman, V. K. Aatre and K. M. Wong, A Fast
Method for Real-Time Median Filtering,” IEEE Trans.
Acoust., Speech, Signal Processing, Vol. ASSP-28, pp.
415-421, Aug., 1980.

