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RESUME

On présente dans cet article les expressions
dérivées pour les moments de la fréquence

valide dans le cas d’une situation unique,
aussi bien que dans le cas d’une situation de

instantande d’un signal aléat.oire multi~-periodicité, ou le premier moment. de la
cyclostationnaire. Les résultats montrent que fréquence instantanée peut étre représenté
le signal cyclostationnaire n’est pas dans la forme o cyclique décomposée. Pour
seulement. caracterisé par ‘la périodicité de prouver cette qualitée générale on derive les
ses moments statistiques, mais aussi par expressions pour les moments de plus haut
celle des moment.s de sa fréquence ordre de la fréquence instantanée et on
instantanée. Cet.te caractérisation paraft commente les conditions nécessaires pour leur
existance.
SUMMARY

In this paper we derive expressions for the
moment.s of inst.antaneous frequency of
cyclostationary random =signal Our results
show that cyclostationary =ignal is not anly
characterized by the periodicity of ites
statistical moments but., can be also
characterized by the periodicity of the
moments of its instantaneous frequency. This

I. INTRODUCTION

In this paper we present a statistical study
about the instantaneous frequency of a
cyclostationary random signal. Instantaneous
frequency is among the basic topics in signal
theory and, the concept of it has been a
subject. of considerable discussion in past as
well as some recent. Hterature [1-91.
Although cited references as well as the rest
of Hterature not addressed here, give rather
exhaustive treatment of the subject, there
were few papers to considered nonstationary
processes. The main reason was probably the
non-existence of appropriate theory as well
as the luck of wider interest for that
sub ject.. It was only after the study
published on Wigner-Ville dist.ribution
[10,11] for finite energy signals and its
generalization for nonstationary signals
[12), that a new and useful theory was
available. In [121 a conjoint time-frequency
representation of harmonizable nonstationary
_random signal has been defined and, exploited

characterization appears to be wvalid for
either =single or multi-periodicity situation,
in which case the first moment of

instantaneous frequency can be represented in
an oa~cyclic decomposed form. To prove this
general property we also derive expressions
for the higher-order moments of instantaneous
frequency and discuss the necessary condition
for their existence.

for the study of the properties of
instantaneous frequency and random group
delay. Expressions has been given for their

expectation and variance without assuming the
narrow band condition or stationarity of the
random signal.

In this paper we consider a
class of nonstationary pracesses
cyclostationary random =signal and, study the
properties of corresponding instantaneous
frequency. We base our consideration mostly
on the theory of cyclostationary signals
developed by W.Gardner [131

special
namely

II. INSTANTANEOUS FREQUENCY

Let =s(t> be a real time-dependent signal and
x(t> the analytic signal associated with
sdt). Ehen by definition x(tO=ms(t) + jE(t.),
where =s(t) denotes the Hilbert transform of
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s(t), lLe.

+00 =sCT
~
sS(L) = V.P. .I’_m TS dt (¢ $]
where V.P. states for the Cauchy’s principal
value. The main reason for introducing the

analytic signal is that inst.antaneous
frequency in general is uniquely defined for
complex signals only and it is proved in (14}
that the theory of analytic signal can be
also extended to the case of random signal
If x(t> is differentiable in the mean square

sense [151, its instantaneous frequency
denoted by f'__(t) can be expressed as

A ImIx’ (LIx <41

= 2>

£.ctd
t 2n x> |*

where prime states for the first derivative
and asterisk for the complex conjugation. Our

initial assumption about =x(t> implies that
2> is a random function of time toos, that
can be characterized by its statistical

moments. Using the same definition as in [121
the mean of instantaneocus frequency denoted
by li!{f,L {3y can be expressed as

a
E{Im[ R (t,s> ]}
ot xx lﬂ:t
E{fi(t’>} = 2n varixdtd] @
EGCtIx (s>}, We note that

where R (t,s) =
XX

(3> is defined without assuming narrow band
condition or stationarity of =x(t>. If - we
further assume that x(t> is a cyclostationary
random signal alternative expression for 3>
can be obtained that reveal an interesting
property. We shall say that a phenomenon
under study, a cayclostationary random signal
x(t)>, features second order periodicity with
cycle frequency a, if
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Rx(t.,'r > = E(x(t.)x‘(t.-‘r >

exists as a function of time-lag 7 and is not

identically equal to zZero; <4> shall be
referred to as a cyclie autocorrelation
function (131 and can be also interpreted as
a coefficient function in generalized Fourier
series representation

R Ct,7) = [ R (7> 2T >
x o x

The Fourier transform

S%> w £ R%rre T4, 6>
® - x

iz called a cyclic spectral density function

{131 or cyclic spectrum. It easily follows
from (6> that (5) can be also expressed as

R,t) =
x

= £ R o3 p ~e S:(t‘)ejz"ﬁ-ejznatdf
o a
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where Sx(t,f Y is a spectral periodic function

of x(t). From <3> and by use of 7> it i=s
easily shown (see Appendix? that a numerator
factor in (3> can be evaluated as
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Assuming EGu(t))=0, the wvariance of x(t> is

given by

varx(t)l = E RO core 2"t
[+ 3
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Substituting the corresponding factors from

B> and (9 into (3> yilelds the following
expression for the mean of instantaneous
frequency
d _a Jenat
. Eﬁkxv(r)lr-oe
E{f (L)) = oad
i Jan 5 R:(o)eJchxt.
(2}
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- vy <10c>
5 TV s b, Hdf
-0 x
Here we have assumed that RYr)> is a
continuous function of time-lag T e R

possessing a first derivative for 7=0, thus
excluding anomalous condition. In the case of
a pure cyclostationary signal x> that i=s
characterized by a single period T
expressions (10a) can be modified as follows

r %?RT/T(T) e_jz'nmt./'l‘
1 m T=o
B (L)) = —— 1>
i J2n T Rm/'l‘co)eJant./T
m x
which reveals that a1 is a periodic

function of time t with the same period T as
Rx(t.,'r) in <7, i.e.

E{f_‘(t.-ﬂ‘)} - E(fi(t»‘

Since the numerator in (11), can be thought

as a convenient. weighting factor it implies
series representation

msT J2rmt/T

E{(f(t)) = T £ a3
AN m 1
given
4 g™ Terdy 20, m#o0
dt o« {T=o ’

since otherwise 13) reduces to a =ingle real

constant. f°. Reasoning the same way for
almost. periodic cyclostationary signal x(t>
,we obtain the more general expression
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where (14a) can be thought as an a - cyclic

decomposed form. Detailed insight into the
structure of this decomposition can be
obtained from the basic relations <10ad-d10c)
and, discussion of condition <14b) is given
in Appendix. The main conclusion that follow
from the above results is that
cyclostationary =signal xtd is not only
characterized by the periodicity of its
aut.ocorrelation function but, can be also
characterized by the periodicity of the mean
of its instantaneous frequency.

III. HIGHER-ORDER MOMENTS

Starting from the general relation (7> it is
easy to verify

dh

SR, = (2" £ 7S e, 0df 15>
d‘!‘“ x IT‘O -0 ®

Here we have assumed that Rx<t.,_‘r) iz n-time

differentiable function of time lag T.
Following the same procedure as in the case
of <i0> we can derive
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which is a generally valid expression

applicable to any nonstationary random
signal. Foxr cyclostationary signal this
relation can be further modified by wuse of
definition (7>

E{f:(t.)} -

1
jzm"

- az>

or with change in notation

J2rnat

ECT(t») = L £ e 18>
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Thus we have proved that conclusion made in

Section II about (14> can be also extended to
higher-order moments of instantaneous
frequency and as so is the general property
of almost periodic cyclostationary signal.

IV. EXAMPLES

Consider the cyclostationary PM sine wave
s(t) = cos[mot. + KtI] adt), ¢td) € R and the

corresponding analytic signal form
x(t) m o0 UHPI] 19>

for which the periodic aut.ocorrelation
function Rx(t.,'r) is defined by

PCLI-pCt-7 )]} e _jo.)o't

Rx(t,r > = E(ej: 20>

Expression for cyclic autocorrelation

function can be evaluated under following two
assumptions:

Case #1 ( ¢(td contains no periodicity >

By this=s we mean that @) is stationary Cor

nonstationary component which implies
Rx<-r) is non-zero only for om0, ie.
a,-1> eJmoT, om0
R¥% > = {7 21>
* , oa®0
where 51_ > is time-averaged Joint

characteristic function for @t> and @t-t>
respectively, i.e.

1 f-O'Z/z E<e JHpctiourplt—T )v]}d t.
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Substituting (21> into 102> we easily obtain

E{f (L)) =
i ]

N\

Case #2 ¢ ¢<tD contains periodicity D

Repeating the same procedure as in Case #1,
cyclic autocorrelation function R (> can be

evaluated as

R = R:('r s30T 23>

and the mean E{i‘i(t.)} can be expressed as

}: 2 %> ed2mat
1 4779 '-rno
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j2r 5 Rgcmejz”“"
Q
= £, + EC 24>

In order to determine particular E(F ¢(t,)} we

take into consideration the following =simple

example. Suppose that R:(-r) is given by

a, om0, a R
o o

« a T, o:-f‘, a <C
R¢('r) - ‘8:1', a--f‘, «@25>

o, o0, |ai #f‘

Substituting ¢25> for R;(-r) in @4 it
immediately follows
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a *
1 eerzf‘L - LI j2nf1t.

E{ () = L+ 3'_271_3_0 j2ra

26>

hence periodicity of 26> iz easily
verified.

APPENDIX

To prove <8) we start with the following
identity (12}

Edmdx’ L% (tOym

1 ®
Z_j [Rx, x(t,t) Rx' x(t,t) ] CALD>
R t,t.D) = ——-8 R <t ,t. D CA.2>
o i gt Tk 1727 | '
1 Lt =t

By use of modified definition [ for
R’m(t.1 ,tz > expression (A2> can be further

evaluated as

R, (t,t> =
X X

Je2nat

d o =
E [E‘Rx<” + _jZnaRX(o)]e A3

T |
TmO
which substituted int.o A1 and after
subtraction of its complex con jugate
counterpart produces the desired relation

e_erzcxt.

EdmG’ (LIx Ctrrm —1-2 d-—Ra(T) A4
_ja dt x | -

TRy

where we have used the following two
identities:

R (t,00 = T R%adet2"t
x o
ot
= [ R%or%e 20t a5
»®
o
Ri‘(r)" = R “¢-7> A6

that hold for complex-valued cyclostationary

signal x(t>. The rest two terms in (8) can be
directly obtained in an easy manner by use of
(A4) and the corresponding definitions given
in (7).

[ ]
Considering (14b> we note that. condition
g— R%¢r> =0 CAT>
T x |

T=O

is met, (excluding trivial -case: R?(T)Eo),
if both Re(Ri‘(r» and Im@®R™(r>» are even
x

continuous functions of time-lag 7, for every
a. But, symmetry property (A.6) which holds
for a complex-valued process x(t> implies

Re('R:(-T)} = Re® T
X
a ~at
Im{Rx(-T)} m - lmﬂl’t <)) CA 8>
so that at least Im{)> can not be even
function of T and thus (A7) can not hold in

the general case.
=
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