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This paper addresses the problem of comparing
algorithm-specific VLSI architectures implementations of
direct vs. transform computation of discrete linear or
cyclic convolutions. The choice has been made of
Rectangular  and  Number  Theoretic =~ Transforms
involving only straightforward arithmetic, computable
without multipliers, and that can be directly mapped onto
regular mesh array parallel structures. Approximate logic-
complexity as well as asymptotic evaluations are
presented that allow to assess, through this illustrative
example, the adaptation of classical multiplicative
complexity criteria to the VLSI computation medium.

L INTRODUCTION

The use of Fourier-type transforms having the
cyclic convolution property for computing convolutions
is common practice for traditional sequential
programmable  processor  implementations  [3],[8],
resulting in an ON?) to O(NlogN) or O(N) computation
speedup. Research in this area was given a new impetus
through the relatively recent results due to Winograd
pertaining to the minimum multiplicative complexity of
convolution algorithms which gave, in particular, a
theoretical basis to the so-called Rectangular Transforms
algorithms, optimum in the rational field [1],[6],[10].
There has also been a continuing interest in Number
Theoretic Transforms which attain absolute optimality by
embedding the computation into surrogate Galois fields
f12].

II. VLSI ALGORITHM EVALUATION

Considering dedicated VLSI architectures
implementations changes the perspective radically. In
this new setting, classical computational complexity
criteria become fully inadapted, forcing one to reconsider
anew the whole task of algorithm evaluation.

There does already exist a well-established
theoretical body concerning such asymptotic evaluations
on the basis of an area-time (AT) or area-time-squared
(AT2) criterion, where die size and computation time are
functions of problem size. This mathematical theory of
VLSI is based on an abstract— and inevitably crude,
model of VLSI computation,

Taking pipelining into account leads to replace the
computation latency T by P, the computation period,
reciprocal of the throughput rate, which we shall assume
is the dominating constraint. For computations such as
convolution, FIR filtering, linear transforms which lead
to unlooped (unidirectional) structures, full (bit-level)
pipeline is always possible and allows to reach a period
which is independant of the size of the computing
structure, so that an area-only evaluation may be
considered to compare between structures having the
same input-output bandwith, and the same degree of
functional parallelism.

On étudie la comparaison entre des architectures
VLSI spécialisées pour la convolution discréte linéaire
ou circulaire réalisée par un calcul direct ou au moyen de
transformées. On a choisi d'étudier le cas de transformées
rectangulaires et en nombres entiers, qui utilisent une
arithmétique simple, sont calculables sans multiplieurs,
et peuvent étre directement plaquées sur une structure
réguliére paralléle de tableau a4 maille carrée. On présente
des évaluations approximatives en complexité logique,
aussi bien qu'asymptotiques, permettant de mesurer, au
travers de cet exemple, l'adaptation des criteres classiques
de complexité multiplicative & I'implantation des
algorithmes en VLSI.

These results should always be taken with caution
as constant factors which are concealed in asymptotic
evaluations tend to be non-negligible for the problem
sizes of practical interest in parallel VLSI architectures,
which are bounded by the physical limitations of the
silicon medium, rather than by time, as is the case with
sequential implementations.

The fundamental limits which  asymptotic
evaluations allow to capture are on internal memory
size, input-output bandwith, and on-chip
communication.  An illustrative example is given by
circuits computing transitive functions [4] of size N (that
is boolean functions, such as cyclic shift, integer product
modulo, cyclic convolution, matrix-vector product,
which allow to map any of their input bits onto any of
their outputs), where  respectively the three lower
bounds : A=Q(N), AP=Q(N) and AP2-QN2) can be
obtained.

Those bounds appear infortunately to be of little
practical interest as they are at the same time extremely
coarse and trivially reachable, by contrast to those which
can be derived in the classical sequential algorithm
complexity theory.

Attempting, for example, to compare different
possible fully parallel VLSI  implementations of the
Discrete Fourier Transform [5], using an asymptotic
evaluation turns out to be rather frustrating, as direct and
fast computation are equally optimal from this point of
vue, both attaining the A=Q(N2n2) lower bound, with
P=0O(1) (full pipeline), N and n being respectively the
transform size and word-length.

Such a fully parallel architecture is, however,
anything but realistic in present VLSI technologies, and
its optimality with regard to the area-time? trade-off over
either bit-serial or multiplexed architectures is of little
more than theoretical interest.

These limitations of asymptotic evaluations in
VLSI emphasize the interest of having a mixed approach,
retaining traditional logic complexity (transistor-count)
evaluation, even on an approximate basis, which
obviously suffers, however, from not taking into account
connectivity complexity. Regular square mesh arrays
allow to minimize this routing area and make a
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straightforward logic evaluation nevertheless legitimate
(at least as much as an asymptotic one) to base a
comparison between two different structures .

This is the reason why an intermediate option has
been taken for this study, comparing direct convolution
with directly-computed-transform structures, both being
implemented as regular  nearest-neighbour-connected
networks.

III. TRANSFORM COMPUTATION
OF CYCLIC CONVOLUTION

Among the numerous transforms allowing “fast"
computation of  circular convolutions, we shall be
interested in those which have the simplest arithmetic.
The convolution's N.N Toeplitz circulating matrix H

undergoes a similarity transformation leading to
compute in three stages Y=HX=BDAX, D being the
diagonal matrix of spectral coefficients. Fourjer

transform, where B and A=Bl=B! are unitary
Vandermonde matrices of integral powers of the
complex N-th root of unity, can be ruled out as it
involves N2 complex multiplications for both direct and
inverse transform phases. Even though this complexity
may be classically reduced to O(NlogN), complex
arithmetic is by far too cumbersome to be contemplated
for application-specific hardware dedicated to real fixed-
point convolution.

Number  Theoretic Transforms are defined
similarly using instead an element of order N in a finite
field, with exact and possibly simple arithmetic. Fig. 1
below shows an example of an order 5 Mersénne
transform of radix 2 defined in GF(25-1).
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Fig.1 Order 5 Mersenne transform

Rectangular Transforms are derived in the rational
field (where no proper root of unity exists) following
Winograd's theory, by use of a chinese remainder
theorem decomposition  of the convolution formal
polynomial kernel, along the basis of rational cyclotomic
polynomials. This ad-hoc derivation is feasible only for
small values of N, and can be iterated for larger values by
using a Kronecker product of the corresponding
transform matrices, following the Agarwal-Cooley
multidimensional decomposition and recursive nesting
algorithm. The spectral diagonal D matrix is M.M, M>N,
the direct A (N.M) and inverse B (M.N) transformation
matrices having only simple +1,-1,0 coefficients so that
they can be computed without multiplications. Fig. 2
gives an example of an order 4 cyclic convolution
computed with 5 spectral multiplications. Fast
computation by means of an optimized FFT-type graph is
possible, but a general derivation of it is impossible, so
that it doesn't lend itself to a regular and systematic
implementation (Fig. 3).
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Fig. 2 Order 4*5 Rectangular Transform

Fig. 3 Rectangular transform computation graph

IV. RECTANGULAR TRANSFORM ARCHITECTURE

The choice made of directly computing the
transforms leads to a straightforward RT square mesh
array structure, illustrated in Fig. 4. This architecture is a
direct fully parallel mapping of the computation and is
made up of two symmetric adder-substractor sparse arrays
for computing pre- and post-additions (direct and inverse
transform) separated by a row of multipliers which
compute spectral products. Proper scaling is required
between these phases.

If a bit-serial approach is adopted, adder planes are
built with simple one cell serial adders with in-place
carrying. An evaluation can be made on the basis of these
elementary cells which can be supposed to have both
inputs latched in a full pipeline scheme. Assuming, for
simplicity, constant n bits word width, 2MN such cells are
used for adder planes, comprising also dummy delay cells
corresponding to the 0 matrix coefficients. Mn similar
cells are used for the serial parallel "spectral” multipliers.

This should be compared with a direct parallel
computation structure that would require N2n such
cells, as illustrated in Fig. 5. Comparison between the two
on this basis (with n=O(logN)) yields a slight advantage in
favor of direct computation, growing with convolution
order.

Asymptotic evaluations do not make sense in this
case as M is no known function of N, and calculated only
for tabulated values. Optimal M would be O(N),
following Winograd's results, but would lead to non #1
coefficients, so that it is preferable to choose larger values
of M that maintain this property and are stable under
tensor product iteration. The problem is then that M
grows quite fast with N. It is interesting to note that
neither the direct nor the transform computation are
optimal on the AP2=Q(N?n2) basis in the bit-serial case
(P=0O(n), AP2=O(N2n3). The direct structure only would be
"optimal” in a bit-parallel approach with full pipeline
(P=0(1)). Such a fully parallel architecture, with bit-level
pipeline obtained through input bits skewing (and
antisymmetric output bits deskewing) and carry chain
latching can also be derived from the rectangular
transform structure of Fig.4. It makes poor use of the RT
algorithm, compared to the bit-serial structure, as adder
arrays can't be (asymptotically) compacted in less area
than parallel-parallel multiplier arrays.
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Fig. 4. Rectangular Transform parallel architecture.
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Fig .5. Direct cyclic convolution parallel architecture

Another possibility is to use a multiplexed one
multiplier structure that requires M iterations to output
its N results in parallel (Fig. 6). This structure relates to
the asymptotic bound A=Q(Nn) (at least that number of
memory points is necessary to store a complete input,
even if one operates in a bit-serial fashion). It is, with
P=0O(M), (assuming it is pipelined down to the bit level)
far from optimal from the AP? point of vue. This
architecture should be compared with a similar N
multiplier cells direct computation structure that would
require N iterations to output N results (Fig. 7). This
structure can also be pipelined (inputs being time-skewed
and circulating coefficients broadcast to all cells), so as to
attain P=O(N). Comparison between the two is
interesting, as the RT structure is better in strict area
performance (Nn+n2 vs, Nn? basic cells, in the bit-parallel
case), while it is slightly inferior with an AP figure of
merit.
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Fig. 6. Rectangular transform multiplexed architecture
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Fig. 7. Direct cyclic convolution architecture

V.NTT ARCHITECTURE

The main problem with rectangular transforms
being the uncontrolled growth of the transform
dimension, one is naturally leaded to use NTTs for which
the number of general (spectral) muitiplications is always
N. It is known that when the transform radix is 2 or a
power of 2, the direct and inverse transform themselves
are computable without multiplications, but only shifts
and additions. This nice property is offset, however, by
some very troublesome constraints relating transform
size and word-length (corresponding to the cardinality of
the computation field), which limits very severely the
practical use of these transforms.

The surrogate computation field (or ring) must be
chosen large enough so that end results do not overflow
(intermediate overflow being always possible). Fermat
(2041, n=2% u= 1,2,3,4) or Mersenne (2P-1, p= 5,7,13,17,19,
31..) primes are the most common choice for moduli, as
they allow simple arithmetic and 2 is a root of unity.

Arithmetic modulo Mersenne numbers reduces to
classical one's complement arithmetic, and transforms of
length p and 2p can be defined which have respectively
radix 2 and -2. They were chosen as an example for this
study, as their main drawback (non-composite transform-
length, precluding the use of a Cooley-Tuckey
computation scheme), was of no consequence, having
regard to the option of direct computation taken. A
number of devices are available to overcome the
constraint of rigid relationship between transform order
and word-length [1], [2].

A bit-serial or multiplexed architecture similar to
those presented for RT would be relatively cumbersome
to implement  using one's complement arithmetic,
requiring complex control for feedback of the MSB carry
output into the LSB carry input. Products by 2! in the
direct and inverse transform stages are also realized with
circular ~ shifts. A fully parallel scheme allows to map
these in the intercell routing pattern, leading to the
structure presented in Fig. 8 Exact arithmetic means
constant word-length and no overflow which result,
however in an overhead rather than a gain, compared to
a classical "open arithmetic” scheme with progressive
scaling and MSB extension. End-around carry feedback
precludes the use of a digit-skewed pipeline scheme,
forcing to revert to a carry-save scheme, which is, in this
case, less efficient, requiring 3 complementary half-adder
stages for final carry propagatxon Wxth full pipeline, the
structure of Fig. 8 comprises 4NnZ+2N2n full adder cells.
A comparison on this basis with a direct fully parallel
structure gives a slight advantage in favor of the NTT
structure, growing with transform order.
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This result is misleading since its asymptotic
performance is in fact dominated by the routing area, in
accordance with the A=Q(N2n2) lower bound.
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Fig. 8 Mersenne Transform Architecture

VI. LINEAR CONVOLUTION ARCHITECTURE [13]

Circular convolutions are of little practical interest
for themselves outside their use for computing Fourier
or cosine transforms [11], [12], and first of all, linear
convolutions. An N-1 terms overlapping is always
necessary to compute by length P blocks a convolution
having an N coefficients kernel through the use of a
circular convolution of order Q=N+P-1. The classical
overlap-save scheme (Fig.9) will generally be preferred, as
it doesn't involve extra additions. The cyclic convolution
structures presented before may be simplified in this case
as only P outputs are needed each time one computes a
length Q circular convolution. It should be noted that
there exists, at least for rectangular transforms, an
optimum value of P for each N, for which the ratio of
transform dimension to block-length is minimum {1].

Any (slight) advantage that could exist in favor of
transform structure on the basis of a cyclic convolution
comparison is in fact lost when one turns to linear
convolutions. This is mainly due to the necessity of
breaking up the convolution into overlapping sections,
while it is "naturally” computed in a pipeline fashion on
a continuous stream of data. Such block computation
could be justified only in the unlikely case where one
would need a throughput higher than what can be
obtained with a one bit-parallel sample per bit-level
pipeline iteration , or rather if one wanted to trade a
lower operating frequency against a larger input-output
bandwidth. Anyway, a bit-serial or multiplexed structure
with  overlap-save  computation ~would obviously be
counterproductive, while a fully parallel structure is
unrealistic to consider in present VLSI technologies.
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Fig. 9. Overlap-save parallel structure for computation of a linear
convolution of length 3 by 4 terms sections

VII. CONCLUSION

Rough as they are, these evaluations allow to gain
insight into the trade-offs at work for the cheice of 2
specialized VLSI architecture under throughput and area
constraints. It may seem surprising, or disappointing,
that, in general, no advantage can be gained from the
use of those clever "fast” algorithms which have been the
subject of such extensive investigation in the classical
signal processing algorithm design field. But their greater
conceptual complexity being in conflict with the new
pervading VLSI constraints of regularity, modularity and
spatial locality, a choice in favor of them would be
justified only if a definite advantage could be proved. As
we have attempted to demonstrate for the examples
chosen, this doesn't seem to be the case.
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