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Résumé

Alors que la transformée de Fourier rapide est de pra-
tique courante sur les calculateurs vectoriels mono- ou
multi-processeurs la situation est toute différente pour la
résolution de systémes de Toeplitz, probléme de base du
traitement du signal paramétrique. Dans cet article, deux
réécritures de l'algorithme de Levinson sont proposées pour
permettre d’utiliser deux ou quatre processeurs en paralléle
et le récent algorithme de Delosme et Ipsen, congu pour les
réseaux systoliques, est aussi adapté pour le calcul vectoriel.
Les performances expérimentales sur Cray-1S8 et Alliant
FX/8 plaident en faveur du nouvel algorithme.

I- INTRODUCTION

Supercomputers, such as the Cray, CDC, Fujitsu, Hitachi and
NEC systems, offer the best performance among general purpose
computers. They employ multiple functional units with vector
instructions 1!l The Cray-1 has a unique arithmetic pipelined urit
and, in Cray Fortran, vectorization is handled through DO loops (21,

While supercomputers are the fastest, the highest speed/cost
ratio is achieved by the minisupercomputers, a mid-range between
supercomputers and superminicomputers.  Minisupercomputers
include Floating Point, Star Tecbnoldgies, Convex Computer and
Elxsi systems. The Alliant FX/8, a multiprocessor with up to 8 vec-
tor units, belongs to that class 18, On FX/8, the FX/Fortran pro-
gramming language offers both vectorization and concurrency
through Fortran DO loops, as naturally as Cray Fortran does for
vectorization only.

Cray Fortran implementations of non-parametric signal pro-
cessing basics are available through several papers and subroutine
libraries, e.g. {4L18, Surprisingly, little work has been done on vector
implementations of Toeplitz system solvers, a basic topic for
parametric signal processing 16 In fact an early implementation of
the original Levinson algorithm on Cray-1 12} can easily be improved
upon; moreover exploitation of both vectorization and comcurrency
has never been studied. In this paper the solution of Toeplitz sys-
tems is considered from the double perspective of vector and con-
current processing. The computations are analyzed, implemented
and tested on both FX/8 and Cray-18.

11- FEATURES OF THE ALLIANT FX/8

Wkile descriptions of the Cray-1 series hardware and features
are easily found in the literature 2} this is not yet the case for the
FX/8 and we shall therefore briefly discuss its features.

The Alliant FX/8 B has up to 8 computational elements
(CEs) able to work concurrently. Each CE contains a vector integer
and floating point unit operating on vector data of length 32 in 32-
or 84-bit precision, 8 floating point and 8 vector register sets for
scalar and vector operations, and a concurrency control unit and bus.
The CEs share a common global memory. A fast memory subsys-
tem, including up to two computational processor caches, transmits
data between CEs and memory.

FX/Fortran is the main programming language on the FX/8.
Concurrency and vectorization are controlled through Fortran DO
loops. The simplest way to generate concurrency and vectorization
with a single DO loop is the vector-concurrent mode in which each
CE takes some of the iterations and executes them with vector
operations. Where DO loops are nested, FX/Fortran runs the inner-
most in vector mode and the next outer loop in concurrent mode
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While fundamental non-parametric signal processing
algorithms, such as the FFT, are available on vector mono-
or multi-processors, little attention has been devoted to basic
problems in parametric signal processing, such as the solu-
tion of Toeplitz systems. To remedy this situation, the clas-
sical Levinson algorithm is reformulated to exploit vectoriza-
tion and two- and four-processor concurrency. Furthermore
the Toeplitz solver of Delosme and Ipsen, conceived with sys-
tolic array implementations in mind, is also adapted for vec-
tor processing. Performance measures on Cray-1S and Alli-
ant FX/8 favor the new algorithm.

thus running these loops in concurrent-outer-vector-inner (COVI)
mode. The other modes, which do not include both vectorization
and concurrency, are the vector mode, scalar concurrent mode and
scalar mode. Vector, scalar concurrent and vector concurrent mode
are good for vector lengths greater than 18, 3-p and 18'p respec-
tively, where p is the number of CEs. The modes may result from
the context in the Fortran code or may be explicitly specified with
optimization directives such as CVD NOCONCUR or CVD NOVEC-
TOR. These directives allow to override the compiler when optimi-
zation does not enhance performance. For instance, with very short
vector lengths, optimization of a DO loop may slow down execution.

II1 - TOEPLITZ SOLVERS
111.1 - Levinson recursions

An n Xn symmetric Toeplitz matrix, T, has identical ele-

ments along its diagonals:
Tl,) ='1|—] +1 for 1<, <n

Levinson’s original algorithm 17l solves linear systems Tz =y with
Toeplitz coefficient matrices and arbitrary right hand sides. The
algorithm calls for n-1 iterations where iteration m essentially con-
sists of 4 dot products and 2 vector-multiply-and-add of length m or
m +1 (Fig. 1). Petersen has implemented that algorithm on the
Cray-1 f2,

In signal processing, an improved version (81 g typically used
in which R, is computed recursively using a single scalar multiply-
and-add at each iteration:

Rm+1 = Rm ~Pm 'Am

In signal processing terminology, the p,, are the reflection coefficients
and the R,, are the prediction error variances. The recursion may
be embedded in the p,, vector-multiply-and-add operation (Fig. 2).
Now iteration m requires only 2 dot products and 2 vector-
multiply-and-adds, hence implementing these recursions would
already improve on Petersen’s work. Unfortunately from the vector
or concurrent processing perspective, the 4 vector operations are
dependent on each other. Furthermore since n is typically small
(less than 30) in signal processing applications (although some geo-
physical applications require orders up to 1,000), it is unlikely that
the vectors will be cut into pieces in some vector concurrent mode.
Yet one can exploit the independence between the last two vector
operations of iteration m and the first two of iteration m +1 and
embed vectors z and C in a two-dimensional array S:

m m m m
S20 Z1 1,1 m+3
= y =
m m m m
Sa+20 T 41 S +3,2 C1

Now, at each iteration, the 4 vector operations may be done con-
currently 2 by 2 (Fig. 3).
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A careful look at two consecutive steps brings more con-
currency to the fore. The first vectorial part of iteration m +1,

T T
+1 +1
Sg:] tm +3 Sg:) lm+3
am+2 __ . . . — . . . m+l .
Smid; = : : = : : + Smfaits
+1
SnT+3,1 ‘3
combined with the second vectorial part of iteration m,
m+1 m m
87, Ssj Sm+2,1
— . m+1 . .
= + |-sri o ,
m+1 m m
Sm +2,7 Sm +2,5 S?,l
m+2 — gm+l m gm+l .
gives Spti, =a - S 5 B S i3 , Where
m+2l +3
al = and A" =
m +2 J
Furthermore
T
m
Sm +1)ll tm +2'
B" = Siia tmas ¥ : ] o ‘
m
S ts

combined with the second part of iteration m -1, gives

m+ll m+2 m+2
m__ om
= m+2,ltm+3+ - m+2l
m+ll

Thus A™ may be calculated recursively via a single scalar recursion:

m o= gl 5o +2,1 [tm+3—‘11m—1]

A new writing of the Levinson recursions is thus found in which the
four vector operations may be done concurrently (Fig. 4). The price
paid is just an extra scalar recursion.

I11.2 - Hyperbolic Cholesky solver

Delosme and Ipsen presented their unnormalized Toeplitz
hyperbolic Cholesky solver (THCS) in a systolic perspective bl A
vector decomposition is proposed here.

Figure 5 lists the equations of THCS, using the same nota-
tions as in III.1. Once the reflection coefficients, Py, are calculated,
there is no dependency between Step 1 and Step 2. Since the two

1 —#y
steps have the same unnormalized hyperbolic rotations, [—p ll’
]

they may be concatenated into common vector operations (Fig. 8).
Iteration m has two vector-multiply-and-add operations of length
2:(n-m) forming a butterfly like in the FFT. Step 3 may be embed-
ded in a similar structure with vectors of length n-m (Fig. 7).

Albeit the vector lengths are typically small (see IL1), it is
possible with THCS to take advantage of longer vectors for problems
‘ with several right hand sides by simply concatenating the different
y ’s with the factorization of T (see Fig. 6-7). This is the vector
translation of the pipelining proposed for systolic implementations [°l,

IV - PROGRAMMING

We shall now discuss implementational issues both on the
vector multiprocessor Alliant FX/8 and on the Cray-18.

IV.1 - COVI mode

As seen in Section III, the 2x2 and 1X4 versions of the
Levinson recursions have, unlike the usual version, potential for both
vectorization and exploitation of concurrency. The natural way to
express concurrency and vectorization with FX/Fortran is the so-
called COVI mode Bl. Loops DO 1 and DO 2 of TLSA (Fig. 8)
express concurrency. The vector operations, written here explicitly
in extended FX/Fortran, are within these loops. In routine TSA, the
analogue of TLSA for the 1X4 version, the MIMD feature of the
1 4 version disabled recognition of the COVI mode as such by the
compiler. To get around this problem, the two basic vector compu-
tations were included in subroutines called concurrently with the
CONCALL optimization directive. With new versions of the com-
piler this stratagem will probably no longer be needed.
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IV.2 - Vector-concurrent mode

The COVI mode, a good choice when the vectors are small,
loses its appeal for large vectors since it does not necessarily allow all
the CEs to be active. In fact, routines TLSA or TSA, which are
23X 2 or 1 X4 concurrent, activate potentially only 2 or 4 of the up to
8 CEs. This leads to the use of the alternative vector-concurrent
model®l. In this mode, instead of exploiting the above 22 or 1 X4
concurrency, each of the four vector operations is dispatched toall
the CEs. At some critical iteration (m =31 from experiments), the
driver routine switches from COVI mode (routine TLSA (Fig. 8) or
TSA) to vector-concurrent mode (routine TLSB or TSB).

IV.3 - Load savings

When ouly one CE is available, the vector-concurrent mode
reduces to the vector mode; this is the natural mode on the Cray-1S.
Interestingly the concurrent writings of the Levinson recursions are
still the most efficient. This is because in these writings the right
hand sides are identical by pairs in independent computations thus
saving some load operations to vector registers. Subroutine TLSB
runs this way under vector and vector-concurrent modes. This is
impossible with the usual version of the Levinson recursions due to
the dependencies. Such savings hold also with the left hand side vec-
tors in the 1 X4 compuiation. On Cray-i this improvement is hid-
den by all the loads and stores needed for the dot products.

IV.4 - Butterfly computations

An even more elegant use of registers may be reached with
the THCS algorithm. In both basic substeps the vector computa-
tions are composed of vector-multiply and adds forming butterfly
operations like in the FFT (Fig. 8 and Fig. 7). In each of the two
butterflies, the reflection coefficient and the two right hand side vec-
tors are used twice. They are kept in scalar and vector registers dur-
ing the butterfly processing. On Cray-1, the load and store opera-
tions alternate with the multiply or adds so as to produce some pipe-
lining. Furthermore, as has been done for the FFT!9, the butterfly
structure allows taking advantage of longer vectors by concatenating
L computations. This corresponds exactly to the pipelining charts
found in a systolic perspective P, Since in the butterfly scheme the
reflection coefficients must be identical for the L system solutioms,
the concatenation is limited to L different right hand sides with the
same coefficient matrix. To do so y, and subsequently z,s Yijs J
¢, and z, are expanded from scalars to L -component subvectors.

1]

V - COMPARED BEHAVIOR

As discussed in Section IV, THCS consumes more floating
point operations, O(3n%) flops, than the Levinson recursions,
0{2n?%), but allows better megaflop rates. On both FX/8 and Cray-
1S the rates turn out to be roughly proportional with a 3:2 factor
(Fig. 9). Competitive speed performances are thus observed, with a
slight advantage for THCS clearly visible on the Cray-1S (Fig. 10).

Little difference is observed between the 2X2 and 1 X4 writ-
ings of the Levinson recursions. As mentioned previously the 1x4
writing of the Levinson recursions should be improved under new
versions of FX/Fortran. The great superiority of THCS comes from
its ability of concatenating efficiently L system solutions (Fig. 11).
Solution of a #th order system with L = 5 right hand sides is as
efficient as the solution of a system of order 18.
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Figure 1. Original Levinson recursions.
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Figure 2. Usual writing of the Levinson recursions.
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Note: S’,”',,+1 is of no use but makes the two vector-multiply-and-add
operations identical.

Figure 3. 2 x 2 concurrent Levinson recursions.
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Figure 4. New 1 x 4 concurrent Levinson recursions.
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Figure 6. THCS equations.
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SUBROUTINE TLSA(SF,SLY,T)
IMPLICIT REAL#8 (A-H,0-Z)

m .
®)": COMMON /TLSCO/ NM
DIMENSION SF(N,0:1), SI(N,0:1), Y(1), T(1)

f /14 [ 1 T c ITERATIONS OF TLS
¥ 2 loa 2 loa I M2 = M+2
ty 2,1 Py fag (2 /a2 M3 = M+3

, ) / , DO1J =01
Ve 2 8 1 s SF(M3,J) == DOTPRODUCT(SI{2:M2,J), T(M2:2:-1))
t T3 39 o4 lep 1 CONTINUE
Y3 23,1 23,2 R = SI(1,1)
‘ . . SF(M3,0) = (Y(M2) - SF(M3,0)) / R

4 T4 42 43 DELTA = T(M3) - SF{M3,1)

L Z41 249 243 RHO = DELTA /R

SF(M3,1) = RHO

t r r r r
’ B 52 53 o SI(M3,1) = DELTA
Ys 25,1 252 %5,3 25,4 DO 2J =0,
SF(1:M2,J) = SI{1:M2,J) - SF(M3,J) * SI(M3:2:-1,1)
4)2'" . 2 CONTINUE
RETURN .
ty END
Y1 Figure 8. 2 X2 concurrent Levinson recursions
t, 8y, Basic step written for COVI mode.
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