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RESUME: Dans la theorie du processement = optimal
d‘antennes on représente généralement les ‘champs
aléatoires comme des processus stochastiques 3 deux
indices stationnaires ot homogénes. Avec ces
représentations, 1’antenne processe la fonction de
covariance spatial et temporelle du champ régu ou sa
transformée de Fourier,c’est & dire, la fonction de
fréquence/nunéro d‘onde. Pour obtenir  des
algorithmes récurrents, on modéle les champs récgus
comme des sorties des systémes stochastiques
distribués. Dans le cas o0 on 3 des champs
aléatoires directionels, modéles d’état on 4té
fréquentment usés., Dans cet article, on considére le
probléme du modelage des champs aléatoires non
stationnaires, homogqénes et non directionels. Avec
1’hypaothése de connaissance de 1la fonction de
covariance espace/temp, on demande que la
représentation soit wvalide sur une antenne linéaire
de lonqueur L. Pour représenter le champ aléatoire
non directionel, on recourt 3 une série de Fourier
spatial tronquée. En faisant usage du fait que cette
série converge en moyenne quadratique sur 1a ligne
dont 1a longueur est L, on mesure le degré
d’approximation par 1l’erreur quadratique moyen. Les
coefficients de 13 série sont des  processus
stochastiques temporels non  stationnaires et
correlés; ce processus vectoriel peut Btre interprété
comme 1a sortie d‘un systéme dynamique linéaire, 3
paramétres variables, avec des entrées stochastiques.

1. INTRODUCTION

In this paper one 1is concerned with the
problem of optimal linear estimation of random
fields, i.e., random processes defined over a field
with 3 temporal domain or 1ndex set telT;,T, 3 and a
spatial domain or index set rek®. There are several
ways to characterize or describe the random fields of
interest. Most analysis involve a second mnoment
characterization of the random field x{(t,r) by
specifying its mean vector

m (t,0) = Ex(t,0)) (0

and its space/time covariance matrix

K, (tl'tﬁ’rl’r } o=

= E{Cx(tl,g )-m (¢

[RaLW ],gl)ltx(tz,g

T
)7 (L1010, (2)

Here it is assumed that the random fields are
faussian and so (1) and (2) completely characterize
them. For wide sense stationary random fields the
nmean vector and the space/time covariance matrix can
be writen as

m (t,r) = n (r) (3)
x = % -

and

Km(tl’tZ;gl'EZ) = Kx(tl-tz;gl,gz) ’ (4)

respectivelly. One also encounters situations in
which the random fields are wide sense homogeneous or
spatially stationary; for this kind of space/time
random processes one can write
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ABSTRACI: Representations of random fields as wide
sense stationary and homogeneous stochastic processes
are generally wused in optimum array processing
theory. With these type of representation the array
processes the received field space time covariance
function or its Fourier transform, the frequency wave
number function. In order to get recursive
processing  algorithms  the received fields are
modelled as the outputs of distributed stochastic
systems. Eor directional randor fields, state space
models have been extensively used. In this paper the
problem of modelling non stationary but wide sense
homogeneocus non directional random fields is
considered. The space time covariance function is
assumed known and the representation needs to be
valid only over a 1line aperture of lenght L. A
truncated spatial Fourier series is used to represent
the non directional random field. As this series has
mean square convergence over the line segment of
lenght L, the quality of the approximation can be
measured by the mean square error. The coefficients
of the truncated series form a3 vector of correlated
non stationary stochastic processes which can be
viewed as the output  vector of a linear dynamical
time varying system with stochastic inputs.

Meltrr) = m (0 (5
and | K (b to3nn,) = K (b tpin ey (6)

For the sake of simplicity, it will be assumed that
the random fields involved are zZero mean. Hence,
space/time covariance and correlation matrices are
the same. For stationary random fields the temporal
frequency, spatial correlation matrix is defined by
+00
Sx(w;gl,gz) = J[Kx( t;gl,gz) exp(-jut ) dt ; (7)
-00 ‘

clearly, when r,=r, this yields the power spectral
density on 3 specific point in space. Siwmilarly, for
an homogeneous random field, one can define the
temporal correlation spatial wave number matrix as

E (t)ytoik)

= [j]h (tl,tz,x_‘) expljck.r)] dr , (8)

where the inteqration is performed over the entire
spatial domain of the proecess and k.r is the inner
product between the vector wave number and the
positioning wvector r. Finally, for a stationary and
homogeneous random field, the frequency wave number
matrix is defined as

P (wjk)=
s Wk

400
= fdt[ﬁdg Kx(t;g) expl{-jluT ~(k.r)1} . (9)
~co

Another method of analysis involves a
description of how the random fields are generated.
In order to get recursive linear estimation
algorithas the received random fields shall be
modelled as the output of linear, possibly



406 ONZIEME COLLOQUE GRETSI - NICE DU 1er AU 5 JUIN 1987

distributed, stochastic systems. In section II this
problem is discussed for signals propagating in an
homogeneous medium and observed over a line aperture
of lenght L within an additive white random field.
The problem of qenerating non directional randon
fields is approached in section III: for homogeneous
random fields an approximated model based on a
spatial  truncated Fourier series over the line
segment of lenght L is proposed; the coefficients of
the series are correlated, in general non stationary,
temporal processes which can be modelled as outputs
of a stochastic system. In section IV the linear
estimation algorithm presented 'in section II is
extended for the situation when the observation noise
has contribution of both white and non directional
noises.

II. TISE RECURSIVE OPTIMAL LINEAR FILIERING OF
PROPAGATING RANDOM EIELDS

Let =(t,l1) be the observation of El
propagating vector signal x(t,1) a3t time instant t
and on a point 1 of a line aperture Q :

2t 1)=HE, Lix(d, Dsutt, 1), £,  1€Q , (19

where H(.,.) is an observation matrix with
appropriated dimensions and w(.,.) is a3 zeroc mean
space/time Baussian white noise, statistically
independent of x(.,.) and with space/time correlation
matrix g9iven by

Edw(t,,1 )uT(tg,lg)} =

1771
= R(tl,ll) ﬁ(tl-tz) 6(11—12) ’ (11)

R(.,.) being a positive definite matrix. Assuming
that the propagation medium is homogeneous, every
block element of the vector random field x{(.,.) can
be written as,

x (ty1)= % (4=T (L)), m=l2e.u,H a
0T, leQ,

where T, (1ljr } is the relative delay to a reference
point 1,€Q  and ., is the positioning vector of
source m. With the condition

x(t,10)=x0(t) (13)

one can verify that the random field x(.,.) oheys the
partisl differential equation (PDE),

2__ 92._ 1. _ N
[ 2+ 1QID 55 ]A“,U =0, 121,1EQ . (14)

In this equation, T(l{r) is a block diagonal matrix
with blocks of the form

e, = | -3pt-----t-- . (15)

¢ being a vector formed by all source positioning
vectors and I an identity matrix of convenient
dimension. The vector process Xo(s) is assumed to be
the state of a linear system driven by 3 white noise
process and described by the ordinary differential
equation (ODE)

=8 = P X, (8 + GO wlt), 3T, (1)

where u(.) is a zero wean, Gaussian, white noise
process with correlation matrix

E{u(t)uT(T)}= QLIdE-1 , (17)

and statistically independent of the Gaussian initial
condition  x,(Tg). In  order to gquarantee the
existence of the solution of (14) with (13) for all
t2Ty and 1€Q, the initisl time imstant T5 in (16)
shall verify

T < I, - omax A tm(l) ¥ .
m=l, ...
1eQ

Here one notes that this model is a quite
general one because a block element, say x,,(.), of
the vector random field x(.,.) can be viewed, not
only as an uncorrelated interference to any other
element of x(.,.) (uncoherent sources), tut alsoc as a
correlated wversion of some other elements of x(.,.)
(multipath situations).

The problem now is to find the optimal
estimate '?(t,llzt, Q) 35 3 linear combination of all
the data

Zt,Q= {s(1,N), Tix'_. T t,AEQ ¥
and such that minimizes the mean square error (MSE)

I

ErCELEX(E, DR, 112, o)1 Dx(t, DR, 1Z 017D
1

t,Q

Using the innovatiens approach (C11,023), it is
trivial to show that the MMSE filter is govermed by
the POE

i 3_-+1(u3)—%i—

3T x(t,lth’gz) =

= JrP(t;l,o) H(t,00 R Nt,00 vit, o) do ,

Q 1, l€Q , A8

with the condition in 1,€Q given by the ODE

————————————— = Bt R (42, o) +

+-jrp(t;10,o) W (t,00 R7Mt,00 vk, 00 do,
Q trT (19)

where the innovations field v (.,.), equivalent to
the observation process =(.,.}, is defined as
v (t,1) = z(t,l)—H(t,l)‘?(t,lth 0 Y,
¥
tzTi , 1€Q . (20)
It can be shown that the error covariance

matrix P(t;1,A) 1is the solution of the fellowing
Riccati PDE

QFCLIA) OF(ti1,A)
ot HEEAREE S ) *

S T () =
= . T -1
= - [P(431,00H (t,00k ~(%,00H(t,00F{1;0,\) do ,
Q 2T, 1,M€Q j(21-a)

with spatial conditions in 1,€ Q given by

= B(tj1,DE () -
. I -1 .
- [P, 00 H 4,00k (4,00H(t,00R (450,10 dO

2 t 2 Ti’ 1leQ (21-b)
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P(t;1,10)=PT(t;lo,1), t21, 1€Q; (21-¢)

dPCEsl ,10) .
———————————— = B(UIP(EL ,1 Y#PCt31 ,1 DE (4)+
jui 0 0 [n]

+RLAUDIE (4 -

- JrP(t;lo,O) HT(t,o)R"l(t,o)H(t,o)P(t;o,lD) do ,

Q b T, (21-d)

At this point one notices  that the

observation field (10} can be viewed as the’

functionally delayed output of the stochastic linear
system qoverned by the ODE (16) and so (18), (19) and
(21) shall be interpreted 25 natural generalizations
of Kwakernaak’s filter equations [31].

III. GENERATION OF NON DIRECTIONAL HOMOGENEOUS RANDOM
FIELDS

Baggeroer [4] proposed an approach for
generating the temporal frequency spatial correlation
function associated with ambient npon directional
noise fields, e.q9., the isotropic or omnidirectional
noise. At 3 temporal frequency w,, those fields,
assumed to be wide sense stationary and homogeneous,
are modelled as a3 superposition of wuncorrelated
infinitesimal plane wave processes, all radiating
towards a common point and gqenerated on / the surface
of a sphere with a larqge radius when compared with
any gqeometries and wavelenghts of interest. Using
spheriecal coordinates, the temporal frequency
correlation function of a3 non directional noise field
is given by

T 270
- _8in_8_ . T
= J[J[ A% S (w 38,0) expl-jk (a (6,0).r)1 do do
o O

where 3p is 2 unit vector in the radial direction and
ko 1is related with the wavelenghi A, by the formulas
ko =3/ Ao=Wo/C, being ¢ the propasgation velocity. If
the statistical 1level 1is assumed to be uniform for
3ll  directions, i.e., So(Wo,0,9=50(wo) for
(o,PeLO,mIxL0,2T], then the temporal frequency
spatial correlation function of 1isoiropic noise is
achieved:

S {w ,r) =8 (w ) sinctk _jr|) ,
y o'- o 0 o' -

the sinc(.) and |.|] functions being defined as
sin(.}/(.) and as the Euclidean norm respectivelly.
In the 1last equation, notice the factoring of
temporal and  spatial structures. By Fourier
transforming, one gets the associated frequency wave
nunber function

No /2 8w )y Ikigk,

P (wo’b) 1o , elsewhere

Yy

which is 3 band limited functionm in the wave number
space. These properties are common to any non
directional random fields with k] propagating
structure. To generalize this representation of
stationary and homogeneous non directional random
fields, one considers non stationary background space
time noise processes with known space time covariance
functions of the form,

K (t,,t

52) = ho(tl,t } hs(g

2 S
Further, it is assumed that a3 factorization exists
for the covariance function Koflty,t;); hence, the
associated scalar time process y,(t) has a minimal
deqree state space representation [S] of the form:

—311533 =Py (b + 6 () u ), (23-2)
y (0 = H (t) y (b, e T, (23-b)

with u’(t3 a white noise vector with covariance
matrix @ (£)6(t-T). As it has been assumed, the
observation region is a line aperture of lenght L.
So, the representation of the non directional field
y(tjr) needs to be valid only over the space interval
Q =0[-L/2€1<L/21. It is well known that seceond order
(finite mean square value) wide sense stationary
temporal processes have a Fourier series expansion in
a time interval T which, for every t€7T, converges in
the mean square sense to the true process,
Generalizing this concept to second order wide sense
homogeneouws space time processes, one can write

i}

vyt 1) = E:

Y, (b expl-jmk 1), 1£Q , (24)
n=-H

L

where the coefficients are temporal processes qiven
by

yom(t) = (1/L) er(t,l) exp(jkal) dl , (25)
with @

= 2
kL 21n/ L . (261}

It can be shown [61 that the MSE

~ 2
Ed]y,(t, 101" > = E{|y(t,1)—yn(t,1)|2@

converqges to zero when M approaches infinity, i.e.,

l.i.m.
N—-»o0

vty 1) = yit, 1), 1€Q .

The  temporal processes  given by (29) have
crosscorrelation functions given by

K (L., t,) =
“nn e ro
= K (t.,t,) fcosC{m-n)T] E (k) sincC{k-nk JL/21
o 1772 s L
~co
sincl(k-mk,)L/2]) dk } , (27)

L

where E (k) 1is the spacial Fourier transform of
Kgéld.

As an example one can consider the wide sense
stationary and honogeneous isotropic noise presented
in the beqinning of this section. For this special
situation, (27) takes the fornm

K (1) =
Can +

sinel(k-nk )L/21

= K 2 -
\D(T) (XO/-) { cosl{m-n)T] L

-

sinc[(k-ka)L/2] dk ¥

if the process y,(.) with correlation function Ko(.)
is narrow band in the vieinity of wg and if the
aperture lenght L is much larger than the carrier
wavelenght A , one can urite

K (= [A_/ (21K (T b
mr 0 o mn

and M=L/Ao.
Clearly, the covariance matrix of the vector
process defined as

T
V(8 = Dy (0] wen [y (0] e |y (40
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with elements K (.,.) is positive definite. So,
the matrix whose elements are the factor appearing
between brackets {.} in (27) is factorable and Y1 (t)
can be written ss a function of Yy (t)

vyt = oty ()

Once the dimension M of the truncated series
(24) is fixed (M shall be chosen such that the MSE is
"small enough'), one can form the (1x2M+1) vector

HM(1)=[ LR | - ' 1 ‘ ‘ LR ] , 1€Q
and the random field y(t,1) is approximately gqiven by

YOt 1) = v, 1 = G, 1)y (1), 63T, ] ,

where Hy(t,l) is defined as

_ "
Hy(t,l) = Hﬁ(l) Ho(t) H ()

and y{t) is governed by the ODE (23-a).

IV. FILTERING ALGORITHM IN THE PRESENCE OF NON WHITE
OBSERVATION NOISE

One takes the observation field given by (10)
and adds to it 3 non white observation noise;-so,
over the line aperture (9 , the observation field is

2(t,1) = H(t,1) x(t,1) +

+ Hy(t,l) y (B +wtt, ), b 2T, 1€Q , (29)

where the vector propagating field x(.,.) is governed
by equations (14) and (16), and y(t) is the solution
of the OIE (23-a). It is assumed that y(t) is
statisticaly independent of x(.,.) and w(.,.) and all
the hypotesis in section II are maintained. The
generalization of the filtering algorithm presented
in section II when the observations are given by (29)
is straightforward, although involving complicated
algebraic manipulations. The filter equations are
the following @

Q2. 2..1% =
[, So- ¢ TN Gy ] SR A

i/;vv(t;l,o) H (4,00 R Nt,00 vit,0) do +

Q
+ P (4,1) J(.HT(t,o) K lt,0 vit,00 40,  (30-a)
sy LY
Rz, o)
1,0
—————— = B Rz, o) ¢

t/;xy(t;lo,o) W (4,00 R7L(t,00 v(t,00 do +

Q
+ R (LY j(Hi(t,o) 8 lt,00 V(4,00 do ,  (30-t)
9]

| ~
——————————— SEW Y (47, o)+
T -1
+[P, (4,00 H (4,00 BT(4,0) V(t,0) o+

+ P (t)_/rHT(t,c) Rlt,00 vit,00 do ,  (30-0)
vy o oy

where the error covariance matrices are defined as
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. e T
BB 10) = ECx(4, 112, o) x (a2 o) T,

=

e " a1 T
Py (1) = BUX(E, 112, o)y (412, o) ¥ = By (4,10,

_ N NT
P () = ECy (412, o) yi(tlzy o) ¥,

and the innovations field is now

VL, 1) = sit,1) - H(L,D)%(t,1)Z

)
~ t,Q
- Hy(t,l)y(t|Z

#,Q)

As in section II, all the error covariance
matrices can be computed offlinme by integrating some
Riccati PDE‘s of the type of (21). bue to space
limitations one does not write them here but rather
enphasizes that they can be easily obtained by
writing the differentisl equations of the estimation
errors and  then proceeding on  applying the
definitions above.

V. CONCLUSIONS

In the present paper one presented a3 time
recursive filtering alqorithm for propagating random
fields that verify the homogeneous wave equation when
they are observed over 3 line aperture within
additive white and non directional noise fields. The
main problem here was that of suitably modelling the
rnon directional noise component. The spatial Fourier
expansion approach was directed to get a3 simple time
variant state space model with an observation matrix
depending of the harmonically related complex
exponential functions exp(j21tml/L). The cost to pay
for simplicity is the possible larqe dimension of the
state . vector y(.). However, one claims  the
generality of this model which, under the stationary
and narrow band assumptions, conveniently aproximates
those presented by Baggeroer(e.f.). .
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