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RESUME

Dans bon nombre d'applications, des
groupes d'éléments sont utilisés pour
déterminer les propriétés des ondes en
propagation. Dans le radar et 1le sonar,
par exemple, un groupe d'éléments est
utilisé pour déterminer le contenu du
spectre et les coordonnées spatiales des
cibles ainsi que le bruit dans le champ en
observation. Dans bien des <cas, les
évaluations des paramétres spectraux et
spatiaux sont faites d'apres une
évaluation approximative du spectre de la
matrice pour 1la sortie du dgroupe. Le
paramétre spatial présentant de 1l'intérét
est habituellement 1le numéro d'onde
vecteur de l'onde de propagation.

Nous considérons ici une évaluation

généralisée du numéro d'onde et nous
établissons les propriétés statistiques
asymptotiques de lt'évaluation. En

utilisant les résultats bien connus de
normes asymptotiques pour 1les valeurs
eigen et les vecteurs eigen
approximativement évalués des matrices de
spectre, nous prouvons que 1'évaluation
approximative de la formule de l'onde est
asymptotiquement normale et nous calculons
1l'écart avec la distribution a la limite.

I. INTRODUCTION

Consider an arbitrary three-dimensional array of
point receiving sensors. The array is in a medium
with a three-dimensional noise field and, using
spectral estimation methods, is used to estimate the
vector velocity, or wavenumber, of propagating waves
in the medium.

It is well known that a stationary random process
can be characterized by means of a spectral density
function. This function provides information con-
cerning the power as a function of frequency. In a
similar manner, propagating waves in a homogeneous
random field can be characterized by a frequency-
wavenumber spectral density function. This function
provides information concerning the power as a func-
tion of frequency and the vector velocity of the
propagating waves. In this paper we consider the
situation where the frequency is assumed to be known
and consider estimation of the wavenumber spectra
only.

We assume that the array consists of M omni-
directional sensors; we let #(w) be the MxM cross-
spectral matrix for the array at frequency w. Its

estimate will be denoted by &N(w). A variety of
frequency-wavenumber estimators, some based on the
estimated cross-spectral matrix, has been proposed,
see [1], [2], and [3]. 1In this paper we consider a
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generalized form of the frequency-wavenumber estima-
tor, and develop asymptotic statistics for this
estimator. Our estimate is similar to that proposed
by Pisarenko [3] except for the fact that our estimate
is based on the more standard smoothed cross-spectral
matrix estimate and we eliminate the Gaussian assump-
tion on the process imposed in [3].

In Section II we present the standard estimate of
the smoothed cross-spectral matrix. We also present
the form of the generalized frequency-wavenumber
estimate. In Section III we present Brillinger's [4]
results on asymptotic statistics for eigenvector and
eigenvalue estimates for smoothed cross-spectral
density matrix estimates. We also present our results
on asymptotic statistics for a generalized wavenumber
estimate. In Section IV we comment on the dependence
of the asymptotic variance on array configuration and
the eigenvalues of the cross-spectral matrix.

II. THE GENERALIZED WAVENUMBER ESTIMATE

We assume that the output of a sensor, say the jth
located at the vector position Ej’ is a wide sense
stationary discrete-time random process with zero
mean. We denote the output process for the jth sensor

o«

by {Zj,n}n=-m'

Given a finite set of observations for the jth

sensor output process, {zj }N we form the dis-

,n'n=1’
crete Fourier transform
N-1
??(Zﬂm/N) = E zj’nexp(-iZan/N)
=0 m=1,2,+++,N

and for a pair of sensors, say j and k, we calculate
the second order periodogram

i?’k(an/N) - (1/an)§§‘(Zm/Nﬁﬁ(zm/n)*
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and the smoothed cross-spectral density estimate

N
B (@ = @u E N - Zﬂm/N)Tgl’k(Zﬂm/N)

m=1

where a(a), -» < a < », is a weight function such that

aV(a) = E

m=-«

a[MN(a + 2mm)]

@

with / a(a)de = 1 and fla(a)|de < . My (bandwidth

parameter) is a sequence of positive numbers such that

MN + o and MN/N > 0 as N » ». The cross-spectral

density matrix estimate is given by

2N

M) = [ v k(w)] o 0

We note that many authors in order to simplify the
analysis do not take the weight function, a(a), into
account in their estimate. Even though it complicates
the evaluation of asymptotic statistics it must be
included in order to achieve a consistent estlmate of
the cross-spectral density matrix.

Since @®(w) is a Hermitian matrix, the usual eigen-
value and eigenvector decomposition applies and we can
write

M
oW = ) @Y YW (2a)
=1
and
M
(w) = E 5 (T, ()] () (2b)
j=1

and {U (w)}

and eigenvectors of Q(w)

are the eigenvalues
The sets {v (w)} and
{V (w)} j=1 are the estimated quantities.

M
where {pj(w)}j=l

Now let g(z) be an analytic function on the half-
plane Re(z) > 0 and monotonically increasing function

of x for x > 0, define G(x) = g'l(x), then G(z) is
also analytic for Re(z) > 0 and monotonically in-
creasing function of x for x > 0.

We now define the generalized wavenumber estimate

at frequency w as PN(w,E) by

w0 = 6(Deld(w) D) (3)

.
where the "steering" vector QK is given by

2; = [wlexp(‘ig-gl), wzexp(—iE.Ez)’ e e,
wMexp(-iE.EM)] “

and the set {wJ}
set {x }

is wavenumber window weights, the
is sensor position vectors, and K is the

wavenumber vector, k = (w/c)r, r is a vector in the
direction of a propagating wave and ¢ is the velocity
of propagation.

Using the eigen-decomposition of (2b) we can re-

write the generalized wavenumber estimate N (w,x) of
(3) as

-

M
Mo, = oln" 2 805, (@)Y, (¥ (w)|p, |- ()

Letting g(x) = x in (5) yields the conventional
wavenumber estimate, that is

N (w,k) = 9: 55T () () D, . (6)

Il t~—1=%

If we let g(x) = 1/x in (5), we obtain the minimum
energy estimate of Capon [1], that is

(l/Gj(w))Yj(w)Yj(w) D - (N
1

~—
Il e~ =

PN(w,E) - 2*[
- J

In the next section we examine asymptotic statis-
tics for the generalized estimate of (5).

III. ASYMPTOTIC STATISTICS

In order to estimate the asymptotic statistics of
the generalized wavenumber estimator of (5) we rely on
the asymptotic statistics for eigenvalues and eigen-
vectors of smoothed cross-spectral matrices as devel-
oped by Brillinger [4].

We define the vector 8(w) and its estimate Qy(w) by

0w = i@, s @G W, o gy ()

8w =[5, o, @0 W, e fw] e

The following assumption on the summability of all
order cumulants of the processes zj o’ jo=1, 2, >,
»

M is a fundamental assumption of Brillinger [4]
required for establishing asymptotic statistics for
second order periodograms.

Assumption 1:

All order cumulants of z, , j =1, 2,
- n
re+, M, satisfy

b4

{1+ |rj]} c (r ST )| <o

bl’.."b

*++*, m - 1 and any m-tuple bl’ ree, b

The next assumption is also a fundamental assumption.
This one is required for establishing asymptotic
statistics for eigenvalues and eigenvectors of cross-
spectral matrices.

Assumption 2: All eigenvalues of the MxM array cross-
spectral matrix are distinct.
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The following theorem, proven by Brillinger [4],
establishes asymptotic normality for the vector of

eigenvalues and eigenvectors, EN(m).

Theorem 1: Let z, be a stationary vector process of

=1, 2’ e, M,

satisfying Assumption 1. Furthermore, let &(w) be the
cross-spectral matrix for the vector process z and

Then

sensor outputs with components zj a’ j
s

let the eigenvalues of & satisfy Assumption 2.

EN(m) of (8b) is asymptotically normal with asymptotic
mean 6(w) and asymptotic covariance structure given by

i covj (/) 28" w)-0(w)), (W) V(8w -2}
Nroo

=X

where z:is given by

- -
“1. 0
. 0
‘2
0 My
® pUU
2 m—m—m
27 Ja(a) da u E (ul_Um)z
- m#l
. . E umU U
M [ Cayw)?
L n#FM ]

for w# nm, n =1, 2, -++, the structure of I is more
complicated if w = nm, but is not presented.

We now state, without proof, the following theorem
which shows that the generalized estimate of wave-
number, (5), is asymptotically normal and provides the
structure of the asymptotic variance. The proof
follows from the result of Theorem 1 and from the
general result for functions of asymptotically normal
random vectors, see Serfling [5]. Note that this
result is a convergence in distribution result, and,

thus, does not imply the existence of moments of
(0, k).
Theorem 2: Under Assumptions 1 and 2, and under the

assumption that N/M; > 0 as N » », we have

WM ? o) - P, La(0,0°(w,0)

. 2 ,
where for w # mod m the variance o (w,k) is

o M 2
o wr) = 21 [ a%(@)da|6'] ) gl (w))B(w)
~ k=1

' 2.2 4
lg (uj(w)) uj(w)Bj(m,E)

I ~—13

3

uj(w)um(w)Bﬁ(w,s)Bi(w,s)
(uj(w) - um(m))2

+ 8 ) g (o)) E (10)

1 m=j+1

Ir—1=

j

2 _ ¥ 2
and Bi(m,g) = legi(w)l .

IV. DISCUSSION

We see from the result of Theorem 2 that the vari-
ance of the asymptotic distribution for the general-
ized wavenumber estimator, (3), tends to =zero as
N > ». We also see from the variance expression (10)
that the asymptotic variance is dependent on the
weight function a(a), the eigenvalues of the cross-
spectral matrix @(w), the first derivatives of the
functions G and g and the array response function
Bj(w,g). It is apparent from (10) that the array
response function Bj(w,g) is a major factor of the
variance expression. We note that the contribution of
the wavenumber weights {wj}?=l is imbedded into the
function Bj(w,E). The exact relationship between the

asymptotic variance and the
eigenvalues is not clear at this time.
the selection of an eigenvalue subset
clear at this time.

cross-spectral matrix
The impact of
is also not
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