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RESUME

Cet article traite le pr-gbleme de 1l'utilisation d'un
réseau de M senseurs. Le réseau de senseurs, dont la

geometric est arbitraire, est utilisé pour localiser la’

source et estimer les paramétres du spectre ol le
champ du bruit est dominé par une interférence
spatialement coherente.

Les éxpressions sont obtenues pour la matrice Fisher
d'info/rmation de la source spatiale et des paramétres
estimes du spectre et pour son inverse, la limite
Cramér-Rac sur les #&rreurs d'estimation. La source,
1'interférence et le bruit de fond sont présumés &tre
un processus de hasard gaussien dont la moyenne est
nulle, et 1ndépendants statistiquement les uns des
autres,

Les entrées de la matrice Fisher d'information sont
exprimées en fonction des quantites physiques
suivantes: la forme du rayon conventionel (the
conventional beam—-pattern) et ses derivées spatialles,
la forme nulle (a null-pattern), le nombre des
senseurs M et les rapports de signal/bruit de 1la
source et de 1l'interférence. En conséquence certains
résultats sont obtenus concernant la correlation entre
l'estimation des parametres de la source spatiale et
1'estimation des parametres du spectre, et la maniére
dont 1la présence de 1'interférence influence la
précision de 1l'estimation de la 1localisation de 1la
source, avec des paramétr‘es de source spectrale connus
ou inconnus. '

1. INTRODUCTION

The use of sensor array to estimate source location
and spectral parameters has been studied extensively
during the last years [1]. If an array of M sensors in
arbitrary geometry is used and the received signal at
each sensor consists of a random signal plus
unicorrelated noise, the data covariance matrix at each
frequency, w, is given by

Kx(w)=Ks(w)+Kn(w)T m

Under the assumption that the observation time T is
large compared with the correlation time of signal and
noise (TW>>1), Fourier coefficients associated with
different frequencies are uncorrelated, For a point
source (spatially coherent), the signal covariance
matrix is

Kg(w)=S(wulwu*(w) (2)

where S(w) is the power spectrum of the transmitted
source and u(w) is a steering vector

g(w)={1,exp(junz),......,exp(ijM)]T (3)

Tm » M=2,...,M are the differential delays between the
m-th and the first (reference) sensors and they are
function of the array-source geometry. Very
complete results are available for the case where the
source radiates a zero mean Gaussian signal and the
observational noise is uncorrelated from sensor to
sensor, i.e., Ko in (1) is a diagonal MxM matrix. In
this case, the estimation problem has the key feature
that the asymptotic estimation errors for source
location parameters (bearing and range) are
uncorrelated with estimation errors for parameters
describing signal and noise spectra. This can be seen
by studying the Fisher information matrix (FIM), which
is the inverse of the Cramer-Rao lower bound (CRLB) on
the estimation errors of the unknown parameters:
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Assuming that Kp(w) in (1) is known, the vector of

unknown parameters, 8 , can be decomposed into
6=(1,p)T , where 1 is the vector of differential
delays, ‘_r_=(T2ﬂ:3,.....,TM)T , contains all spatial

unknown parameters and p is a vector of the spectral
parameters of the source (any parametization of S(w)).
The FIM of § , Fg can be partitioned as

“{F_ F
. F _ T iyl . (u)
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For the case where Kp(w) is a diagonal matrix, it can
be shown that F.p=Fp{1=0 so the CRLB(t)=F"' and the
estimation errors of the spatial and spectral
parameters are asymptotycaly uncorrelated.
Furthermore, if in addition Kp(w)=N(w)I, where I is an
MxM unit matrix, then

Fﬁ%gk(m)deA (5)
where
2, 2
k(@:%’ﬁ% ; and p(w)=%§%%; JA=MI“11T (6)

1 is an (M-1) vector of all ones [2]. Notice that here
F. is not a function of t. The FIM (or the CRLB) for
any spatial parameter vector ¢, (bearing in the far
field case or bearing and range in the near field case)
can then be obtained using [3]
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Fy=CTF.G ; where Gjj=

Kirlin and Dewey [4] showed that for the general case
of a non-diagonal noise covariance matix, F, becomes a
function of 1. However, they did not consider F., and
Fps 1.6, - S(w) assumed to be known.
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In this paper we study the FIM for the case of a
noise field dominated by a spatially coherent
interference. This study provides some insight into the
general problem of non-diagonal noise covariance
matrix together with specific results for the
important case of source parameters estimation in the
presence of a spatially coherent interference.

To minimize algebric complexity we give results
only for the case of far field source and interference
( location specified by bearings « and B ). We assume
that each radiates a narrowband, zero mean Gaussian
random signal in the same frequency band (around w, ).
The source and interference are uncorrelated and have
spectra of levels S and I respectively, flat over the
band W. We also assume that the location and power of
the interference, together with the noise level N, are
known so the vector of unknown source .par'ameter's is
simply g:(a,s)T, Under the narrowband assumption, the
FIM is given by

Fg=—-d (8)

where J is the FIM for 6 when only Fourier
coefficients associated with one frequency are
available as data. (The more general case of unknown B
and I is discussed in [5]).

2. THE FISHER INFORMATION MATRIX

For 6T=(«,8) , J is a 2x2 matrix given by
= €))
J Jd
For any zero mean Gaussian vector, Jij is given by [6]:
oo 3Ky MKy
i LB YA L3 T 10
Jij tr'ace[Kx (aei Kx (aej? (10
where in our case Kg in (1) is given by (2) and (3) at

w=w, and Kn is given by

Kp (0o =I{wo)¥ (0¥ *(we) +N(w 1 an

V(e =L1,6xp (JwoTa) yeeenerexpGuoTy) 1T (12)

’}‘m, m=2,...,M are the differential delays of‘v the
interferring signal to the first (reference) sensor.
Introducing

5 ; and ¢ = 1-2 (13)

we notice that Z is the height of the normalized
beam-pattern (BP) for a beam steered in the direction
of the source «, when the interference is incident
from direction B (or vice versa).

Also define

2
= 02

2
tTaau*y
M

Y=

au* o uu®
2 )

k3

v (14)

where U=diag(u); J, is given in (6) and [tlp=3ty/0« ,
m=2,...,M. For a far field source, tp=(Xpsine+Ypcos«)/c
where (Xp,Yp) are the coordinates of the m-th sensor.
Here we notice that Y of (14) is the output power of
the system of Fig. 1 due to an input signal
(interference) at bearing B . This system nulls the
source (at bearing « ). Its output power is simply due

to the interference. ( When the source and
interference coincide, Y=0). The elements of J are
given by:
M¥(1+Mpig)? M2
Ja= =
s R ot 7oL . (15)
T P
Mpips
Jag=Igam—gmz(1+Mp1 0)Z1 (16)
and

Ja=Jo—AJ*+8J , where J, is the FIM for « in the absence
of the interference (the case of a diagonal noise
covariance matrix) given by

Jo=k(wtTdat (17

and (AJ-8J) is a non—negative term which increases the
CRLB of « and is due to the presence of the

interference.
v is the interference steering vector given by
pa=MzcuotTayerampiy) 5 s3=2E2E2  (19)
INTERFERENCE
AT BEARING :
B ty
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Fig. 1

: A nulling processor having output power Y due to an interference at bearing 8.
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Slwgy Hwe .
In (15)-(18) s Nwy i~ {lo R=1+M(pi+pg)+M?pipst
and Z1=-g% .

It is now clear that the FIM (and therefore the CRLB)
for the estimation errors of the spatial and spectral
parameters of a source in the presence of a coherent
interference (with known parameters) can be put in
terms of SNR and INR, the number of sensors M, the
conventional beam-pattern Z and its first derivative ,
the null pattern Y and the fundamental error Jo .

All of these factors have physical meaning: hence one
can describe the asymptotic performance of the optimal
estimator in simple physical terms. The following
observations can be made:

a. The case of a diagonal noise covariance matrix is a .

special case of the one presented here., By
setting I=0 (p;=0) the FIM J given in (15)-(18)
reduces to the well known result of spatially
white noise. In particular, J,g=0 for pij=0 , so the
estimation errors of spatial and spectral
parameters are uncorrelated. For pi#*0 eq. (16)
indicates that the key factor determines the
geometrical coupling between spectral and spatial
parameters 1is the BP derivative Z1=3Z2/3« . It is
immediately apparent that Z=0 implies Z1=0. Thus,
at nulls of the BP J.g=0. However, it does not
follow that small values of 7Z insure weak
coupling. Hence one cannot argue that source and
interference separated by more then a beamwidth
insures weak coupling, even if there are no high
sidelobes. What is required is that a beam steered
on the interference exhibits a pattern which is
essentially flat in the direction of the source.
Whether its height at that point is large or small
is of secondary importance.

b. The derivatives of Z do not appear in Js (Eq. (15)).
For spectral estimation with known source bearing
the height of the BP for a given source
interference separation summarizes all relevant
geometrical information. In particular, at nulls of
the BP the CRLB on S is the same as in the absence
of the interference.

c¢. Denote the CRLB on « for unknown S by CRLB(«) and
the bound on « for known S by CRLB(«/s) we have
that

v - ™
CRLB(«/8) =™ = (do=ad+ 80)™ (19)

CRLB(&) =1 (Jom80)™! (20)

It follows that unknown spectral parameters cause
an incremental error in source bearing (related to
AJ) which is not a function of Z1. For AJ to be
small, a beam steered on the source must carry
little interference power. If the source spectral
parameters are known, the improvement in the
bearing estimator performance is related to &J,
which is a function of Z1. This suggests that the
knowledge of S can be used via the sensitivity of
the beamformer output to variations in « ,

d. For large M and Z#1, R varies as M? ., It follows
that J, and Jg are not a function of M while Jgg
varies as 1/M. That 1is, when the source and
interference are separated by more than a
beamwidth, one can find M large enough so as the
spectral and spatial parameters estimation errors
are practically uncoupled., Furthermore, also AJ
and &J vary as 1/M and 1/M", respectively so that
the bounds on « in the presence and absence of
interfernce do not differ markedly for separations
in excess of a beamwidth,

3. NUMERICAL EXAMPLES

Consider the regular hexagonal array shown in Fig.
2. If the array is steered in the direction «=0, Fig.
3a shows the beam pattern Z and its first derivative
Z1 (Fig. 3b) as a function of B . In Fig. 3¢ the null
pattern Y ({(eq. (14)) is depicted. Fig. U shows the
CRLB(«) and the CRLB(«/s) for «=0 as a function of B .
The source SNR is pg=1 and the interference INR is
pi=20. Also shown in Fig. 4 the CRLB for « when the
interference 1is absent, CRo=(w/TW)Jo™! . This 1is the

INTERFERENCE

Fig. 2 : The array used for the numerical examples.

dashed horizontal line. Fig. 5 gives equivalent results

for an array of the same shape and dimension with

M=13 instead of M=6 . (One sensor was added in the

center of the array of Fig. 2 and 6 more were added

symmetrically on the hexagon adges). By looking at

Figs. 3 to 5 the following observations can be made:

a. As expected, CRLB(«)2CRLB(«/s). Also, since at B=0
Z1=0 and Y=0, the bounds are equal at «=0,

b. CRLB(«) is similar to CRLB(«/s) in regions where Z1
is small (20°$8s50° , 75°5B<120° and 821409, This
confirms the result that with small Z1 the
estimation errors of spectral and spatial
parameters are uncoupled., Notice, however, that
with large Z1 the difference between the CRLB(«)
and the CRLB(«/s) is as high as 13dB.

¢c. In the presence of interference the bound is as
much as 12-13dB higher then when the interference
is absent. The CRLB(«) is similar to CRy only in
regions of small Z, small Y and small Z1 ( B=36°,
80°£85110° ).

d. Figs. 4 and 5 show similar behavior of the bounds
within the mainlobe of the BP. However, for 8>30°,
CRLB(=)=CRLB(«=/s)=CR, with M=13 (Fig. 5) only. This
confirms our contention that for large M and
separations larger then a beamwidth the presence
of interference has little influance on the bound.

e, Within the mainlobe of the BP ( 8520% the bound on
« has certain features regardless of array
geometry:

With unknown spectral parameters it has a single
peak at O0<Bp¢(asL)» Where A 1is the signals
wavelength and L is the array diameter , A/L in
radians is approximately the beamwidth of the
array beam pattern. That is, at spatial separation
less then a beamwidth, the estimation accuracy is
poor, with smaller estimation errors at 8=0 then
at By. With known spectral parameters the bound
shows a main lobe near B8=0. This main lobe is much
narrower than the BP width, suggesting that one
can achieve much better resolution than with the
conventional beamformer. This is not the case with
unknown spectral parameters. Notice also the
existence of a sidelobe of the bound within the BP
main lobe (having a peak at about the first peak of
the null pattern). This sidelobe (which can be
higher than the mainlobe for smaller interference
to source ratios) was also observed by Heilweil

[71.
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: a. The conventional array beam-pattern, Z.
b. The derivative Z1=8Z/3«.
¢. The null-pattern Y.
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Fig. 4 : The Cramer-Rao bounds, M=6.
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