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ARGENTINA

RESUME - .
Quand la sortie d'un systeme AR excité

par une entrée de spectre ample se met en
cascade 3 travers d'une fonction transfert
no-linal, 1l'identification du systéme est
afecttée par un erreur dont la magnitude dé-
pende de la nolindalite . La solution a ce
probl8me que est present® ici est 3 travers
de l'usage d'un identificateur formé par deux
bloecs, le premier est un transfert inverse et
le seconde est le filtre classigue "moving
averages" ou "lattice".

Cet identificateur a &t& ralisé de
maniére adaptatif et sa vitesge de conver-
gence est relativament lente.

Introduction

Recently Billing and Voon(1) have present-
ed three algoritms to estimate the parameters
of nonlinear systems in terms of input-output
observables. Classically the approach has
beeing the use of Volterra or Wiener series
expansion(2'3)
time consuming. In all the cases, the iden-

tifier makes use of both the input and the

, but the method is computer

output sequences. As in some problems the
input is not obgdrvable the identification
is only aproximative and for small nonlinear-
ities.

In our approach the system to be identifi-
ed is an AR model followed in cascade for
a nonlinear no-memory transfer, excited by
a zero mean, independent white noise x{(n).

The AR portion of the system can be re-
presented by a linear difference equation:
y(m)=  a; y(n-1) + x(n)
cascaded by a nonlinear funection z(n)=f(y(n))
and the observer has access only to the
output z{(n).

To solve this problem, we can use a two
blocks identifier. The fimt block is an
invers€e nonlinear no-memory transfer able
to linearize the transfer of the systen,

and the second block is a standard MA or
lattice filter.

SUMMARY
When the output of an autoregressive (AR)

system, excited by a wide spectrum input is
cascaded through a nonlinear function, the
identification is affected by the nonlinear-
ity, and the classic linear prediction me-
thods of identification cannot be used in

the normal way. Some methods presented before
requiere the knowledge of the input sequence
in order to estimate the nonlinear part of
the system, which is a serious drawback in
some cases, In this approach the identifier
organized as a cascade of two inverse blocks
ope for the nonlinear part of the system, and
%ﬁé b%her one for the AR porticn. In the
adaptive version the speed is reduced.

The first block is expanded in a Taylor
truncated polinomial:

w(z(n))zbo-rb.] .z(n)+b2 zz.(n) + ouee
or under the form of a linear picewise func-
tion. The second block is expanded as a MA
or LPC inverse filter.

In the adaptive version of this identifier
all the coefficients are upgraded every
sampling time, looking for a flat (white)
spectrum of the output.

As the adaptive method of parameter esti-
mation allows the identification of slowly
varying coefficients of the system, the speed
of the estimation can be important. In this
method, for typical cases, the number of
samples is around several thousands , but
very fast convergence and very small variance
in the estimation is obtained if the input
x(n) can be measured.

As the model used to represent the system
is nonlinear, results very sensitive to the
amplitude of the input, but on the other side
the truncation of the series limits the range
of the identification. So we have to be very
careful to select the input amplitude or the
number of coefficients of the nonlinear block.

In all the simulations that we have made
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no measurement noise is added to the
system that is supposed to be free from
this problem.

The inverse of the nonlinear function

The block that performs the inverse
function T~ = f'1(y(n)) of the nonlinear
part of the system to be identified f(y(n))
can be seen as an operator accomplishing
the following operation: (see Fig.1)

7=t (1)=1

Obviously, T has to be a single valued
mapping of y(n) that is to say z(n)=f(y(n)).
Otherwise the inversion is not longer pos-
sible.

In order to simplify the problem we can
use non-memory mappings for both, the non-
linear part of the system and its inverse.
In that case if z=f(y) the application of
the nonlinear inverse £~ gives

£ e (y)) -y =0

For non perfect inverse the subtraction
leaves an error, that in our case will be
used to correct the coefficients of £ 1.

£6) f)

Fig.1

An example of the relation between the
two applications is shown in Fig.2. The
resulting functions are "mirror symmetric".

Fig.2

A

As normally the variable y is not given
in closed form but as a set of samples of
a signal x(n) used as input to the system
and filtered by the AR part of the system,
a method to build up the inverse function
is to use an adaptive method to change the
coefficients of £ '..In that case (see Fig.1)
w¥-~ y =& or

*(£(y)) -y =£

where f¥is an aproximated inverse function
and £ is the error. '

The classic Widrow method of convergence
to f"‘l is to decrease (in the mean square
senge) the value of & using the algorithm:

f* (ke1)=* (k) -9 *(x)
where the last term is the upgrading gradient
calculated in every adaptation cycle.k.

In order to use this algorithm we have to
expand * in an adecuate class of coefficients,
If we use orthogonal coefficients the conver-
gence will be very fast, but in order to
simplify the operations we can use non ortho-
gonal,simpler'but with slow convergence.

Here we give two of the many possible
expansions, one is the truncated Taylor
polinomial and other one a linear picewise
function,

In the Taylor expansion - useful for small
nonlinearities ~ the upgrading is

oy (k+1)=c; (k) -)u.&(k).zi
where
2

f(z)= Cop + €4y 2+ cyzt o+ ...

is the expanded nonlinear function and is
a convergence constant, that in order !z
reducé the error variance is sometimes decre-
ased very slowly if the system to be identif-
ied has constant output statistics.

On the other side, in the linear picewise
expansion (see Fig.3) with N sections of the
same size the ordinate.w® is every time
calculated using: j=z/L i=integer(j),sign(j)
Az=z - 1.1 in order to separate the value
of the abscissa z in two components the first
modulo-L and the restAz. After that we can
define the function w¥= A(i) + B(i).8z where

A(d) -z A(i-1) + B(i).L
The coefficients A(i) and B(i) are upgraded

with the following criterion: A(O) is corrected
and also all B(i), but the remaining A(i) are
antomatically upgraded because they depend on
A(0) and B(i) as expresed by the equation:

A(i)= A(i-1) + B(i).L 1€i€N

So the upgrading is:
Ko)= Ak”(o)-)u.a(k)
B¥(i)= B%"T(1) - pe
W'
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The linear picewise function has the
advantage that can cope with very strong
nonlinearities and it is very simple to
program but as the coefficients with higher
subindex i are strongly dependent on the
others, this correlation decreases the speed
of convergence.

The inverse of the AR block

As the identification is based on the
cascade or series method using a zero mean
independent white noise input (that is a
"hidden" or not measured variable) exciting
the linear AR block in the process, we can
model its inverse using an adaptive method
to update the coefficients of a moving
averaged (MA) or a lattice filter. The latter
has normally faster convergence. (Fig.4)

vait transfer

Jo) 12 sl ma |2

- - — —_ _not accesible line
Fig.4

- ——

If the MA identification filter is expand-
ed in the following fprm:
**(n) =1 +§

by w(n-i) 14 i€ p

where bi are the coef?icients to be upgraded
and p is the (supposed) maximum number of
poles of the AR system filter, the upgrading
algorithm is:

b?” = bli( -—P.ak w(n-i)
where k is the number of upgrading steps that
frequently is the same that the sampling
interval n, but can be changed to a multiple
or submultiple of that interval.

If our choice is the .lattice method we can
use many convergence methods, each one with

t(4'5). In our simulations

a particular meri

we have used (see Fig.5)
EF{(n)=EF(n-1) - K{n).ED(n-1)
EB(n)=EB(n-1) - XK(n).EP(n-1)

K(n)=K(n-1 )+HEF(n-—1 ). (ED(n=1)-EF(n-1)K(n-1))

3():4;/

Experimental results

In a typical experiment, we have used as the
process the following system:

y(n)= x(n)+1.2 y(n=-1) - 0.7 y(n-2)

as the linear, second order AR process and
z(n)= y(n) + 0.2 (y(n))?

as a linear and quadratic nonlinearity.

Cur choice as the nonlinear part of the
identifier is a third order truncated Taylor
polinomial:

win)= ey + ¢y z{n) + cs zz(n) + Cx zB(n)

and for the MA inverse filter we have used
a lattice filter of two coefficients.

In the nonlinear identifier, we have
normalized the value of o forcing it to
be the unity.

used in the
nonlinear identifier is set to .1 and the
starting value mf?tOf the lattice is set
to .15,

The initial value of

Both coefficients are reduced to decrease
the variance of the errors in the following
form:

: ,f:o.9995 \1‘"

?“;:O .99995 r‘f‘

The convergence is slower than in linear
identification, and an error remains in the
value of the coefficients mainly due to the
low number of terms in the Taylor polinomial
but the results are fairly good.

In 1700 steps the results are:

¢=0,0207 (should be zero)
cy= 1 (forced)

¢y==-0.3705

c3=-0.0562

K(1)= 0.66259 K(2)= ~0.5088

In 104 steps the results are:

CO=O.O3218
cy= 1
02= -0.2768

Cz= -0.08823%

%X(1)=0.6975 K(2)= ~-0.596

Conclusions

A "blinded" identification of a non-
linear AR process can be realized with the
method already presented. We mean blinded
because we use only the output of the
process and the statistics of the input
(zero mean, independent white noise).

Two identification methods are used in
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the nonlinear part of the identifier:

a truncated Taylor series or a picewise
expansion of the inverse function. The
latter gives a better aproximation when

the nonlinearity is strong, but its adap-
tation has to be done more slowly because
the interdependence among the coeffipients.

Both methods are only aproximate in the
sense that always remains a variance in
the estimation of the coefficients of the
process due mainly to the imperfeci inversion
in the nonlinear block of the identifier.
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