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RESUME

Lorsque n et g sont relativement premiers entre
‘eux et m représente |’ordre multiplicatif de q modulo
n, les mots d'un code cyclique sur GF(q) de longueur
n peuvent etre associés a des n-uples sur GF(qm) par
une transformation, de Galois-Fourier basée sur une
racine primitive n'®™ ge 'unite sur GF(qm). On
demontre que 1{a cyclicité du code se traduit par
I'annulation d'un certain nombre de composantes
spectrales dont les indices de position appartiennent
a une reéunion de g-orbites de Z,. Dans le cas des
codes minimaux, une seule orbite entre en jeu a
partir de laquelle il devient aisé d’'identifier des
représentants, dans le domaine spectral, des cycles
élémentaires. Le poids de Hamming des mots de code
correspondants est alors aisément calculable, sans
inversion de Fourier, par utilisation soit de

I'algorithme d’'Euclide soit d’une  procédure
d'approximation rationnelle minimale d'une séquence
scalaire (p.e. la procédure de Wilkinson-Morf-

Kailath). Les résultats sont d'ailfeurs extensibles
au cas général par adaptation au cas spectral d’un
Jrésultat du a Van Lint. Du fait de I'efficacité des
procédures de calcul des transformées de Galois-
Fourier, |'approche devrait s’'avérer capable de
décomposer des codes de dimensions beaucoup plus
importantes que les valeurs atteintes par les
methodes classiques.

I. Introduction

The search of the weight enumeration of a code
generally requires an amount of computations growing
exponentially with the dimension of the code. Cyclic
codes, however, present a rich mathematical structure
that may be exploited to reduce the amount of compu-
tations during the search and to allow the study of
bigger codes. The methods which are known (Goethals
{1]; Willett [2]; Tavares, Allard and Shiva [3]; and
Cohen, Godlewski and Perrine [4]) are based on a
partition of the set of codewords in elementary
cycles, and the calculation of a unique represent-
ative codeword for each cycle, thus avoiding the sys-
tematic generation of all the codewords. We expose
here a similar method which is based on the proper-
ties of the cyclic codes in the transform domain.

Il Galois-Fourier transforms of codewords

Given n and q relatively primes and m the mul-
tiplicative order of q modulio n (i.e., the smallest
integer m such that qm = 1 mod n), we define the

Galois-Fourier transform of the vector
€ = (CQ:Cts--.+Cn-1) E GFAq)n as the vector
C = (Cg,Cq....,Ch-1) € 6F(¢™" such that
n-1 ik
Ck = ¥ ¢, ¢ k=0,1,...,n-1
. i
i=0
where ¢ is a primitive nth root of wunity in the

extension field GF(q™) and m is the multiplicative
order of g modulo n. By analogy with real signal
analysis, the wvector spaces GF(q)n and GF(qm)n are
called, respectively, the time and the frequency
domains while G is called the spectrum vector of c.

The Mattson-Solomon polynomial associated with ¢
will be defined as

SUMMARY

Given (n,q) = 1 and m the multiplicative order
of q modulo n, cyclic codes over GF(g) with length n
can be mapped into n-tuples over GF(qm) through a
Galois-Fourier transformation making use of a primi-
tive nth root of unity of GF(qm). It is shown that
the cyclic property of the codes is reflected by the
cancellation of specific spectral components corre-
sponding to indices which belong to a union of
q-chains of Z,. For minimal cyclic codes only one
q-chain is present from which it becomes easy to
identify cycle representatives in the spectral
domain. The Hamming weight of these specific code-
words can be easily computed without Fourier inver-
sion through the use of either Euclid’'s algorithm or
any minimal partial realization procedure for
rational sequences such as the Wilkinson-Morf-Kailath
algorithm. The results are furthermore applicable to
non minimal codes by using a spectral version of an
extension of a result due to Van Lint and which is
easily implementable on a computer. Taking into
account the efficiency of computer based Fourier
transformers, it is believed that this approach
should be able to deal with larger codes than pre-
viously possible with the more classical direct meth-
ods.

n-1
Cya(x) =
MS i=0
The necessary and sufficient conditions for a
linear subset GF(qm) to be the spectrum vectors of a
cyclic code over GF(g) can be expressed as follows:

ijn'l mod(x"-1).

(1) Conjugacy constraints: in order for a vector in
GF(qm)n to have its inverse Galois-Fourier
Transform in GF(q)n, its components must satisfy:

q
% = C((ak))

where ({(qgk)) means that qk must be reduced modulo
n.

(2) For a given code, specific spectral components
are always zero.

A set of spectral components which are related
to one another by conjugacy constraints is called an
orbit. Components that share the same orbit have
subscripts which belong to the same cyclotomic set of
Zn. Thus, we can say that a cyclic code is a code
that has nul orbits, and at least 'one non-zero orbit.

11!l Weight enumeration of minimal codes

Minimal cyclic codes are characterized by parity
check polynomials which are irreducible over GF(q)
and whose roots over GF(qm) are the successive powers
of some primitive element in GF(qm). Hence the
associated set of power values form a cyclotomic
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subset of Z, which is precisely the set of indices
where the Galois-Fourier components are non zero.
Hence the spectrum vectors of minimal codes have only
one non-zero orbit. Thus, knowing only one non-zero
component, we can use the condition (1) to find all
the elements of GF(qm) that are "allowed" to be in
the spectrum vector. The cycie representatives are
then, among the allowed elements, the ones that may
not belong to the same cycle, that is, elements such
that the differences of their logarithms are not
multiples (modulo n) of their subscript.- This last
property comes from the fact that a time-domain
cyclic shift corresponds to a frequency-domain modu-
lation (i.e.. Cj ~ gle).

Example:

Take the minimal code M(15,4), with generator

polynomial corresponding to the codeword
c = (110001100011000). We find:
C = (0.0,0,a14,0,0,a13,0,0,a7,o,o,a11,o,o),

where « is a primitive element of GF(24). The
cyclotomic set containing the subscripts of the
non-zero orbit of the code is {3,6,9,12}. By condi-
tion (1), we must have:

2 _ 2 _ 2 2
03 = CG’ C6 C12, C12 = Cg, and Cg = C3,
that is:
16 _ 16 _
C3 = 03. or 03 - C3 =0

Thus, each element of GF(24) is "allowed" to be
in the spectrum vectors. Cycle representatives may
now be found as follows. The multiples of 3, modulo
15, are 6 013,2.9,12,15 }. One can then easily check
that { e¢”,a ,0” | have logarithms whose differences
ére not multiples of 3. We then choose, as cycle
representatives:

BO = (0,0,O,aO,O,O,QO.O,O,QO.O,O,QO,O,O)
51 = (0‘0,0,01,0,0,02,0,0,a8,0.0,a4,0,0)
82 = (0‘0,0.02,0,0,a4,0.0,a1,0,0.&8.0,0)

th Since the weight of a codeword is the number of
n root of unity that are not zeros of the Mattson-
Solomon polynomial S0 that w(c) = n-g.c.d.

(C(2),Zn~1), the weight of a frequency-domain cycle
representative can be obtained either by Euclid's
algorithm or by minimat partial realization of
sequences. This reduces substantially the amount of
computation that would be needed by the use of the
inverse Galois-Fourier transformation.

IV Extension of the procedure to the general case

The results we have obtained for minimal codes
may be generalized to all cyclic codes, by an exten-
sion of a method suggested by Cohen, Godlewski, and
Perrine [4]. We state it as:

Theorem 1: Let e; be the period of the codemord aj
and T@(gi) the codeword we get by shifting aj
‘cyclically ¢ times. Let C be a cyclic code which is a

direct sum of minimal codes M;, that is, C = E;M;.
Let a; € M;. Then, the mie; distinct codewords
2,17 a,), 0¢p <e

are partitionned into

wiei/lcmi(ei)

cycles of period lcmj(e;). tor which the words

2.71°(a,)
are representatives, where 0 ¢ s; < gcd (‘ij<i

(ej).ei).

Once transposed in the frequency domain, the
preceding theorem becomes

Corollary 2: Let C be the cyclic code such that € =
%iM;, and let a; € M;. Then the wje; spectrum vectors
obtained by

Eigj(i)‘»oigi 0§<Pi <Ei
where C; is the spectrum vector of a;, and (i} a
subscript of a non-zero orbit of M;, are partitionned
into

niei/lcmi(ei)

cyclies of period icmj(ej). The frequency-domain cycie
representatives are given by
g JSig

i 1

where 0 < s; < ged(lcmycjleg).ej).

From this theorem and the foregoing theory, we
can state the following algorithm applicable to the
weight enumeration of binary cyclic codes:

Algorithm:

Let C = M.

r
=7 !

1. Compute the spectrum vector of the code’'s genera-
tor polynomial.

2. ldentify the r non-zero orbits of C.
Define
k(i) : number of elements of the ith orbit.
j(i) : subscript of one element of the i

orbit.
3. Compute
m, . u . th
3.1 8; : element of GF(2") "al lowed" for the
orbit.
3.2 e; : period of the cycles of M;.
3.3 Ngj number of non-zero cycles in M;.
4. Form the r-tuples (ﬂ%1, ﬂ%g. Cee ﬂ%r) with
Ly = -=, 0, 1, ., Ngi-1.

4.1 For each r-tuple, compute the characteristic
r-tuples of cycle representatives
i j i L
R = (51(1)S1ﬂ%1, §l(2)82ﬂ%2, S.|(r)Srﬂrr)

., ged(lemyci(ey).ej)-1.

4.1.1 Compute the frequency-domain cycle
representative, by application of
the conjugacy constraints.

4.1.2 Compute the weight of the time-
domain corresponding cycle represen-
tative, W, and add it up in the
weight enumeration tabie

Aw « Ay + per(R).
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Example:

Let us take the cyclic code C(15,6), over GF(2),
with generator polynomial corresponding to the codew-
ord :

¢ = (110011100100000).
1. The spectrum vector of ¢ is

1 10
= (0.0.0.0,0,&5.0.05.0,0,a10,0 O,O,QS,O. )

e

2. There are 2 non-zero orbits whose subscripts are
respectively the elements of the cyclotomic sets
{ 5,10 } and { 7,11,13,14 }.

We get k(1)=2, j(1)=5 and k(2)=4, j(2)=7.

3.1 8y =0 Bp=al
3.2 ey =3, ep = 15.
3.3 Nc1 = 1, Ngo = 1.
(181,51 j(2)s2,L2
a. Ro= (1817 (1(2)524.%,
with : ¢ = o,
S1=0
52=0. 1, 2
L1 = -c0, 0
Ly = -w, 0
i e R o= (a5S1aSL1 752,12,
Ly Ly sp sy R Cycle representative Weight Period
‘e w 0 O (0. 0) (DO0OOOOOOODO0OD) 0 1
w 0 0 0 (.9 0) (o11011011011011) 10 3
0 =« 0 0 (0, 0 (000100110101111) 8 15
o 0 o o (.2.9 (omino10100) 10 15
0 0 1 0 (.2.7)  (111001000001100) 6 15
0 0 2 o (.2.%  (101010010110000) 6 15

The weight enumeration of C(15,6) is then:

Ag =1

Ag =2 x 15 = 30

Ag = 1x 15 = 15

Aigp =1 x3+ 1x 15 = 18.

Y Conclusions

In this paper we have presented an efficient and
simple procedure for the weight enumeration of cyclic
codes which makes use of a Galois-Fourier transform
of the codewords. Further extension is also possible
by exploiting the automorphism of any binary cyclic
code under the operation of squaring a codeword which
yields another codeword of the same weight and period
as the original one. A complete exploitation of the
classes of automorphism is difficult because of the
large amount of memory which is required. A partial
exploitation of the procedure is however possible
within the usual memory constraint and is currently
being tested.
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