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Dans cette communication, on analyse 1'intégration
de la modulation, des signaux et des procédures
de décision afin de réduire la probabilité d'erreur
dans un systéme de communication a canal rétroactif.
Les modulations de fréquence & phase continue
sont considérées en particulier. Les performances
des systémes de communication sont optimisées
en fonction de 1'indice de modulation et du nombre
moyen de transmissions de chaque symbole.

1. INTRODUCTION

In many communication systems it 1is possible
to use an essentially noiseless feedback channel
to improve the communications over a noisy feedback
channel. In general, the noiseless feedback channel
permits a reduction in the amount of signal energy
and in the complexity of coding and decoding opera-
tions required to achieve a specified performance.
Typical examples are the sequential decision schemes
[17,[2], and the Automatic-Repeat-Request (ARQ)
techniques [3],[4], using error detecting codes.
In these communication systeins, wnen the forward
channel introduces an uncorrectable error pattern,
the same information is retransmitted until a
correct reception of the information is detected.
The error probability in all these communication
systems depends on the Euclidean distance and/or
the Hamming distance. The Euclidean distance is
introduced during the modulation operation, while
the Hamming distance depends on the channel coding
scheme.

In this paper, it is shown that the integration
of the modulation operation in the signaling and
decision structure of the feedback communication
systems permits to reduce significantly the error
probability. In classical feedback communication
systems the signals associated with successive
transmissions of the same symbol are all the
same. In the scheme described in this paper the
modulated waveforms corresponding to successive
transmissions of the same symbol are different
and they are chosen 1in such a way as to increase
the Euclidean distance between the signals. The
proposed scheme can be applied both to sequential
decision feedback schemes and ARQ schemes. Continuous
-Phase-Frequency-Shift-Keying (CPFSK}  modulations
which are very attractive for their low bandwidth
occupancy with respect to classical digital modula-
tions, are in particular analyzed.

2. CPFSK  MODULATION  AND EUCLIDEAN DISTANCE FOR
SEQUENTIAL SIGNALING

In a classical sequential signaling scheme
each block of k informative symbols 1is encoded
in a codeword of n symbols of a code {n,k), able
to correct t errors and to detect s>t errors.
The general block-diagram of the proposed scheme,
denoted 1in the following with ARQl, 1is shown in
Fig. 1. The source generates symbols from a finite
alphabet A = {aj,a5,...,am} with M elements. Each
block of k dinformation symbols coming out of the
source is encoded in a codeword ¢ = {cyy, n symbols
Tong, of a coder C of type (n,k). The alphabet
of the code is assumed, for simplicity, equal
to that of the source, but the method can be easily
generalized to the other case. Code C is assumed
able "to correct t errors (t>0) and to detect s>t

In this paper the integration of the modulation
operation and of the signaling and decision struc-
ture 1in order to reduce the error probability
in a communication system using a feedback channel
is analyzed. Continuous-phase-frequency modulations
are in particular considered. The performance
of the communication systems determined by the
Euclidean distance 1is optimized as a function
of the modulation index and of the mean transmission
number of each symbol.

errors. Before its transmission, each symbol
ci 1is sent to a CPFSK modulator which associates
with this symbol, in the interval [(i-1)T,iT],
a waveform si’p(t) if ¢ = aps which is given by:

(M s, p(t) =‘/§? cos[ut + 1¥E i * %)

where T dis the time-signaling interval, E the
signal energy, f, = mQ/Zn the carrier frequency,and
%y 1s a phase term introduced in order to maintain
the phase continuity at the end and at the beginning
of the time-signaling 1intervals [5]. The phase
paths 1in the CPFSK modulation can be represented
through the phase trellis; as an example, Fig.
1 shows the phase trellis of a CPFSK modulation
with h = 0.5.

Let us consider the j-th transmission of
the codeword c. The received signal in the i-
th time-signaling interval (I<i<n}, corresponding to
si,p{t), is denoted with r.(t7. The demodulator com-
putes the M Euclidean distinces d; o(j) between hﬁt)
and si p(t) for p = 1,2,...,M. Thése distances are
used to perform a cumulative report, which is
updated every time a new transmission is performed.
Each time a transmission of c¢ 1is received, the
receiver forms the matrix of the Euclidean distances
D(j) = {D4,p(3)}, for lcp<M and I<icn, defined as:

(2) Di,p(j) = Di,p<j_]) + d;’p(j)

being Dj ,(0) = 0. D(j) is called the cumulative ma-
trix of 'the Euclidean distances. After the matrix
D(j) for ¢ has been computed, the demodulator
tries to decode n symbols. A vector w = (w1,w2,...,
wy) is constructed in the following way. The i-th
component is set equal to the symbol ag of A for
which it results:

(3) Dy (j)=min D, (J)

i,s T<pit i,p

The decoder analyzes the vector w; if w contains
an uncorrectable error pattern, tThen a negative
acknowledgment (NACK) 1is sent to the transmitter,
which provides a new replica of ¢, while if ¢
is a codeword of C or contains a correctable
error  pattern, then it 1is assumed as correct
and a positive acknowledgment (ACK) is sent to
the transmitter. The Euclidean distances among
the symbols to be demodulated increase linearly
with j and, therefore, the error probability
at the input of the channel decoder decreases
with j.
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The method described herein can be applied
to any classical feedback communication system.
However, in  some sequential signaling schemes,
the same symbols or codewords are retransmitted

consecutively [6],[7]. In these
can be furtherly modified 1n
its performance.

The codeword ¢ is transmitted m; times consecu-

cases, the method
order to improve

tively and the Sequence of transmitted svmbols
is shown 1in Fig. 2.a. However, different orders
of the transmitted symbols can be considered;
the most obvious order, which will be taken into

account in this paper, is to transmit each symbol

mj consecutive times, as shown in Fig. 2.b. In
this way, for the transmission of the i-th symbol,
a sequence of mj symbols equal to ci is sent.

The symbol c; can assume M different values and,
therefore, M different sequences of mj  symbols
are possible. ’

However, this 1is not the only possible choice.
In fact, for the transmission of cj, we can use
any group of M sequences with m; components from
the alphabet A. In this respect, if Cj = ap, the se-
quence used to transmit ci is denoted with ap =
= (ap 150,250 500 mal> where ap €A As an  eXam-
ple,”” in" “the P binary caSé A = {-1,1},  two
different sequences n_y and @7 with m; components must
be chosen among the =~ 2™ ™ possiblé sequences.

The choice of the M sequences ay influences
significantly the Euclidean distance among the
modulated signals. The Euclidean distance is also
influenced by the 1length L of the observation
interval used to perform the demodulation. In
fact, the demodulation of the r-th symbol is general-
ly performed by observing the actual symbol and
the (L-1) successive symbols. The Euclidean distance
between the received signals, LT sec. long, and
all the possible sequences of L symhals is computed;
then, the r-th symbol to be demodulated is set

equal to the first symbol of the sequence having
the Towest Euclidean distance from the received
signal.
3. RESULTS

The most intuitive method of choosing a-] and

a1 is to set all their components equal to -1
respectively, i.e.

or 1,

(4) ey = (-1,-1,-1,...) g = (1,1,1,...)

However, this choice can be in some cases non-

optimum since other sequences may give a higher
Euclidean distance.

. Figs. 3.a and 3.b show the Euclidean distance
de for a CPFSK modulation versus the modulation
index h for m = 2 and m = 4, respectively. When

no memory is used at the receiver side (classical
ARQ scheme), and the 1length of the observation
interval is L = 2, the Euclidean distance 1is repres
ented by curve a. For the ARQ1 strategy, the Eucli=
dean distance is represented by curve b. The Eucli-
dean distance for the ARQ2 strategy using sequences
(4) s given by curves ¢ and d for q =1 andg=
= 2, respectively. As can be seen from these results,
the ARQ2  strategy using sequences (4) npermits
the achievement of an dincrease in the Euclidean
distance for Tow values of h and the gain increases
with m. For mean values of the modulation index
(h = 0.5), the ARQ1 strategy gives higher Euclidean
distances. However, these results depend on the
choice of the sequences q.7 and aj. -

The Euclidean distance 1in the ARQ2 strategy
is improved by increasing q and, therefore, L.

Figs. 4.3, 4.b and 4.c show the results obtained
for m = 2, m=3and m= 4, respectively. In these
figures curve a gives the results for the ARQI
strategy, and curves b and c¢ give the Euclidean

distance when sequences (4)
and q = 3, respectively.

The optimum choice of a_; and @y, which give the
highest Euclidean distance for each modulation
index, has been determined through a computer
search, as depicted by Figs. 4 (curves d and e).

are used for g = 2
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Fig. 1 - Phase trellis of a CPFSK modultation with
=1
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2 - Retransmission protocol of an ARQ scheme
in which a codeword is transmitted some
times consecutively: a) classical scheme;
b) modified protocol.
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Fig. 3 - Minimum Euclidean distance d; versus h: a) m = 2; b) m = 4,
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Fig. 4 - Minimum Euclidean distance dj versus h for the ARQ1 and ARQ2 schemes:
a)m=2;bym=3;¢c)m=4,
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