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RESUME
Nous présentons une technique d'analyse
Temps-Fréquence & haute résolution basée sur une
- version modifiée de la Représentation

Temps—Fréquence de Wigner-ville (WVD). <Cela est
obtenu en reconnaissant que la WVD est défine comme
étant la Transformée de Fourier (TF) d'une forme
bilineaire et complexe, puils en remplacant la TF
par une méthode d'analyse spectrale paramétrique 3
haute résolution.

1. INTRODUCTION:

Time-frequency signal analysis has recently become
the focus of research as more and more analysts are
confronted with the widely reported insutficiencies
of classical slignal analysis tools, based either on
time-domain or frequency domain representations of
the signal. Although Wigner's formulation dates
back to 1932 [1] and Ville proposed 1its use in
signal analysis in 1948 [2] at which time he
defined the analytic signal, 1t was not until the
late 1970's that research teams ploneered its
actual use in engineering applications [3a] [3b].
These efforts in Europe benefitted from a general
formulation of Joint Time-Frequency Distributions
(TFDs) proposed by L. Cohen {4}, which provided a
sufficiently comprehensive framework for the study
and understanding of previously narrowly defined
representations such as Rihaczek's, [5], Page's
[61, the spectrogram [7], the sonogram [8], as well
as those already mentioned which are today referred
to as the Wigner-ville Distribution (WVD).

A criterion for choosing the most appropriate TFD
for engineering applications was proposed in
1978-1979 by Bouachache et al [3al, [3b]l, and two
years later in 1980 by cClaasen and Meklenbrauker
[9). <This criterlion consists of selecting the TFD
which provides an unblased estimate of the
instantaneous frequency of the signal with the best
resolution and accuracy in the Time-Frequency
domain when applied to a monocomponent frequency
modulation (FM) signal. Based on this criterion,
Claasen and Meklenbrauker demonstrated in a series
of papers in the Phillips Technical Journal that
for real valued signals the Wigner Distribution was
an  "optimum" tool for time—-frequency signal
analysis despite the presence of 1low frequency
artifacts. Bouachache (now spelled Boashash)
argued that the analytic signal associated with the
real signal under analysis should be used and
therefore named this TFD the wigner-ville
Distribution (WvD) in recognition of the
contribution of ville who first proposed the method
for signal analysis [10a] [10b]. sSince then, fast
developments in this field have been observed
regarding both theory and applications of the wvD
as interest in the method spread among scientists.
successful applications to varlous areas have been
reported, among them seismic [10], oceanography
[lla]l [11b}, loudspeakers [12al [12b]. Many other
papers speculated about the possible applications
of the method to a variety of situations, without
going much further [13] [14]. 1Indeed, the number
of successful applications 1s still very 1limited.
There are several reasons for this:
1) The apparent complexity of the method, as
reported 1n some papers which incorrectly
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We present a technique for high resolution
time-frequency signal analysis based on a modified
version of the Wigner-ville Distribution (WVD).
This is achieved by recognizing that the WVD is the
Fourier Transform of a bilinear complex kernel and
replacing the Fourier Transform by a high
resolution model based spectral estimator.

describe an "aliasing problem"™ which results
from the use of the real instead of the
analytic signal. [9b].

2) confusion concerning the criterion upon which
the choice of the WVD is based.

3) A problem with the windowing of the signal,
when it 1is not of finite duration, or when it
is desired to have a frequency resolution
independent of the choice of a window.

We Dbelieve that the first two points can be
overcome by careful application of the wWigner-ville
analysis procedure [15] [16]. As far as we know,
point number 3 has not been dealt with in much
detail. Therefore, the primary object of this
paper 1s to discuss this latter issue and to
propose a new method for Time-Frequency signal
analysis using a modified Wigner-ville Distribution
[153[17].

2. THE WINDOWED WIGNER-VILLE DISTRIBUTION:

Let x(t) be a real function of continuous-time with
Fourier Transform X(£f). The analytic signal
assoclated with x(t) may be expressed [2] as:

z(t) = x(t) + j H [x(t)] 1)

where H denotes the Hilbert Transform defined by

+o
H [x(t)) =p.wv. -1 X0
T ot - ¢

az (2)

The Fourier Transform, Z(f), of z(t) is related to
X(f) as follows:

2x(£), £>0
Z(f) = X(f), £=0 (3a)
0, f<o
+eo
where X(f) = I x(t)e Javftg (3b)

The Wigner-ville Distribution (WVD) is defined [2)as:
+co

wo(t,£) =1 z(t + 1/2)z*(t - v/2)e"I2vf1g, (4)
-0

Equation (4) implies that evaluation of the WwvD is a
non-causal operation, in the same sense as Egs. (2)
and (3b) imply that these transforms are non-causal.
Thus, the value of the signal must be known for all
time before either the Hilbert transform or the WvD
can be evaluated. This 1s a problem similar to the
one observed for the Fourier transform (FT) and may
be overcome by well-known techniques. The Hilbert
transform can be approximated by the use of either
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finite impulse response (FIR) filters or infinite
impulse response (IIR) filters. In all of these
cases, the limitation is overcome by applying the
WVD to a windowed version of the signal. If the
WVD is required at time ta’ the windowed signal is:

zm(t,ta) = z(t) m(t—ta) (5)

where m{(t) 1s the window function and satisfies:
m(t) = 0 for t>|Tm/2| where Tm is the width .of

the analysis window. The WVD of the windowed
signal is given [18] by a one-dimensional
convolution in the frequency variable:

Wz (t,£) = [Wg * wp)(t,£) . (6)

Thus the effect of windowing 1is to smear the WvD
representation in the frequency direction only,
hence the frequency resolution can be increased by
using a longer window without adversely affecting
the time resolution.

By evaluating wz(t,f) at time ta' a "cross section"
of the WVD at time ta can be approximated. With a
change of variable from ta to t and using the shift

invariance property of the WvD [3], the WvD at any

point in time can be evaluated by shifting the
signal z(t) so that time t 1s mapped to the time

origin. Therefore, the "cross section" of the WwvD
is evaluated about a point in time using:
+co
Wy (£) =1 X(t)w(x)e I2nfre, (7)
m 0
where k() = z{(1/2)z*(-1/2) . (8)
and wit) = m{t/2)m*(-1/2) (9)

‘From Eq. (7) it can be seen that the WwvD 1is
effectively the FT of a kernel signal k(t) which has
been windowed by w(t). Even though the time-domain
window function is m(t), the effective window in the
bilinear kernel domain is w(t) and hence the
resulting frequency resolution 1s directly related
to the spectrum of m(x)[18]. when a window is
specified for the WvD it will be implied that this
is the function w(x).

As outlined in the literature
Wigner-ville analysis provides a robust means of
estimating the instantaneous frequency of a
non-stationary deterministic signal such as the
linear FM signal

s(t)
where $(t)

a(t).cose(t)
2n(f t + at?)

Wigner-ville analysls (WVA) may be thought of as a
two—step process:

1) A sequence of kernels k(t,t) = z(t+1/2).
z*(t—-1/2) regarded as function of T
parameterized by t, is formed using the analytic
signal z(t) assoclated with the real signal
s(t). Since s(t) obeys Bedrosian's conditions
[3] then H[s(t)]l = a(t).sin¢(t), then the

analytic signal becomes z(t) = a(t).ej¢(t).

" 2) R Fourier transform of the bilinear kernel is
taken with respect to the variable =, using a
window, w(+t), to reduce spectral leakage.

For the linear FM signal, the bilinear kernel

k(t) = z(t + 1/2).z*(t - ©/2)

becomes a complex sinusoid with frequency
proportional to the chirp parameter o«. A coarse
estimate of the instantaneous frequency is provided
by the position of the frequency peak 1in the
magnitude of the kernel's Fourier Transform.
However, for short integratlon times, i.e. windows,
the FT is known to be a poor spectral estimator

[31f91[101], -

[21]. In addition the window function further
reduces the resolution of the Fourlier Transform. In
this paper, therefore, we propose to substitute a
high resolution, model-based spectral estimator such
as Plsarenko spectral analysis [19a] or the
eigenvector-based spectral estimators such as those
of Bienvenu and Kopp [19b]}, the MUSIC method of
Schmidt [20a}, or the ESPRIT technique of Paulraj,
Roy and Kaillath [20b]. If in some applications,
these estimators are found to be computationally too

intensive since they are of o(n®), then a carefully
chosen -version of the maximum entropy method
originally proposed by Burg [21] could be used since

it is of O(nz). In this case, care must be
exercised to avoid potential problems with 1line
splitting and bias errors [22].

3. THE MODIFIED WVD (MWVD):

A varlety of numerical methods for super-resolution
spectral estimation have been proposed [24b]. Since
a harmonic process <can be generated by an
autoregressive (AR) model, the kernel k{t) at time t
may be fit by the output of an appropriate AR model;
the AR coefficients will estimate the cross-section
of the wigner-ville bpistribution at time t. This
method 1is based on extrapolation of a segment of a
known autocorrelation function for the unknown
lags. The extrapolated autocorrelation function
satisfying the maximum entropy criterion will be the
most random one consistent with the known segment of
the autocorrelation lags corresponding to the
kernel. Equivalently, the estimated spectrum 1is the
smoothest one of all the spectra which do not
conflict with the known segment of the
autocorrelation lags. The direct application of
this method 1is subject to several well known
difficulties [23] which are:

- The choice of the order of the AR model;

-  Noise influence; Since the method is based on a
least-squares fitting of the kernel to the AR
model, it 1s sensitive to noise which is
additive with the signal.

Following Tufts and Kumaseran [22) and Minami et al
{23], we modify the method to improve its robustness
to the noise and to make it insensitive to the order
of the AR model. This 1is achieved by using the
singular value decomposition (SvD) of the kernel
data matrix to compute a reduced rank pseudo-inverse
for use in the AR model fitting process. This
method of super-resolution described in [23] assumes
the sampled kernel data under analysls can be

expressed as a Pth order AR model [24a]:
P
Celk)= ~ 2 ap(i) Ce(k~1) + n(k); k=p, N-1 (10)
i=1

where Cc(k) = z{t+Xx) . z*(t-}), A = k—(gélq)u odd (11)

N is the number of input samples; ap(i), 1=1p are

the coefficients of the AR model, and n(k) is a
gaussian white noise process.

(Here, we have assumed a change of variable k = 1/2
before discretizing, as reported in [3].)

As previously mentioned, the spectral analysis of
the sampled kernel data could be achieved using one
of the various methods 1listed in [24b], such as
Maximum Entropy Method, Prony's method, etc. RAll
these methods are based on a solution of (13) which
gives the best least-square fit while allowing for
edge effects. To be efficient, an estimator must
also be stable and converge quickly to the
solution. There are several methods which provide
the desired performance. The singular value
decomposition (SVD) was adopted in this paper since
it was shown to be insensitive to the model order
and to improve noise immunity [23].

(It is important here to note a significant error in
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[23]. The equations (1) and (9) of that paper are
incompatible. If the equation (9) 1is to be used
then the left part of equation (1) should be
multiplied by (-1).). At time t, Equation (10) can
be expressed as:

—{cl.[al + [n] = [c] (12)

with the following notations.

" ap(p) n(p) c(p) A
fal =| [n} =| fc] = : (13)
ap(l) n(N-1) c(N-1)
"c(o) c(l) ‘e c(p-1)
c(1) c(2) c(p)
[c] =]|c(2) . .
Lp(k~p-l) C(N-2)

A
In the absence of noise, the estimate [a] (ie, AR

coefficlients) can be given by:
A
{al = -[c1t. [c] (14)

where [C]+ is the generalized inverse of the matrix
{C] obtained via the reduced rank SVD.

This solution corresponds to a least-square fit of
the data to the model chosen.

The cross-section of the Wigner-ville Distribution
at frequency f is then estimated by:

2
“h

wit,f) = o< £ <1/2

1 +32 a (i ex ( 2 i

where o° represents the variance of n{(k).

The pseudoinverse is used instead of [C]_1 since in
many practical cases, the matrix [C) 1s singular and
it's inverse does not exist.

The modified Wigner-ville distribution estimated by
(15) should improve further the spectral resolution
achievable by the results presented in the next
section.

4. IMPLEMENTATION OF THE ALGORITHM:
4.1. The Proposed Algorithm

Currently Wigner-ville analysis is performed using a
software package developed by B. Boashash, L. White
and colleagues for use in the CRISSP laboratory
{25). The software package can analyze signals from
user supplied files or from the built-in
signalgenerator. Results of signal analysis are
then processed by a graphics package to provide the
user with a , Time-Frequency plot. In the WwWVD
package, a sliding window is applied to the sampled
data, and the wWigner-ville analysis performed on
each windowed portion. For each windowed portion,
the windowed kernel Kk(t).w(tr) is formed and then
passed to an FFT algorithm to calculate the
"spectrum®™. A Flowchart for the WVvD algorithm is
shown in [25].

In the new method, the singular value decomposition

is used to form the generalized inverse [C]+ of the
observation kernel matrix [C]. The estimate of the

AR coefficients are formed from [c]+. lel , and the’

Power Spectral Density (PSD) from (15). A facility
to calculate the generalized inverse is available in
the mathematics package MATLAB [26]1, so it was
decided to link these routines into the WVD source
code. The original MATLAB package 1is configured to
deal with a total of approximately 5,000 matrix

elements (i.e., 2,500 complex elements). This
limited the size of the observation matrix [C] to
approximately 20 x 40 complex samples. The MATLAB
source code has then been subsequently altered [25].
te allow for up to 32,000 real elements which now
limits the SVD to matrices up to 40 x 100 complex
samples. The algorithm to calculate the Power
Spectral Density (PSD) given N input samples is
entirely implemented by MATLAB. The sequence of
steps to be followed 1s shown in the theory section
and the equivalent steps in MATLAB are shown in
[25]. Unless otherwise stated, the order of the
model P 1is N/3 where N 1s the number of samples
input to the PSD estimator. The value of N is not
‘usually constant for each windowed portion as it
depends on the number of samples available either
side of the point in time of interest. If there are
M samples available either side of "itime", then a
window length 2M is used. Otherwise only the length
corresponding to the available samples are used.

5. RESULTS:
5.1 Initial testing and integration into TFD.

To verify the AR modelling approach presented in
[23], the SVD was initilally applied to find the PSD
of a 64 point sinewave of frequency , where fs is

the sampling frequency. The SVD was also applied to
a 64 point sinewave at fs/B using 48, 50, 100, and

200 frequency beams between 0 and fS/Z. The results

show that resolution increases as more points are
used, but if the input frequency lies between two
frequency beams, then it will be missed [25].

The next step investigated the performance of AR
modelling in place of the FFT when using
Wigner-ville analysis by substituting the SVD and
FFT calculations into the TFD package currently used
by CRISSP. (The integration into TFD was performed
in 3 stages to minimize errors and enable an
independent check of intermediate results so as to
minimize the risk of multiple errors cancelling each
other and to efficiently localize the cause of these
errors [25) ). Tests were first performed on real
windowed signals. The SVD spectral estimator
performed very well 1in localizing the spectral
components of the signal, but has trouble coping
with a small model order when windowing is applied
[25]. Then further testing was done using the
windowed analytic signal. As expected, the SVD
appears to have had no problems in’ resolving the
spectrum except at small window lengths when using a
Hanning window {25].

5.2 Testing the windowed kernel.

The MWVA was initially applied to 64 samples of a
single sinewave of frequency 25 Hz, sampled at 200
Hz. The MWVA resolved the frequency of the signal
with an extreme -accuracy and markedly improved the
one obtained by the WvD [25].

The superior performance of the Wigner-ville
Distribution as a tool for Time-Frequency Signal
Bnalysis was first demonstrated on linear FM signals
[3]. The MWwVA should, therefore, perform even
better than the WVD for this class of signals. The
test signal is a 64 sample linear FM signal sampled
at 200 Hz and modulated from a lower frequency of 10
Hz to an upper frequency of 80Hz. The results are
shown in Figs 1 and 2.

The improvement in spectral resolution achievable
using the MWVA over conventional WVD can be seen by
comparing these results with those obtained in Figs.
1 and 2. The improvement in spectral resolution at
short window 1lengths is quite marked. The major
problems with this approach are the spurious peaks
observed in the plots as explained in the previous
section. The MWVA of the 1linear FM signal was
calculated with various window sizes with the PSD
estimator determined for 200, 400, 600 and 800

2(4\/



spectral lines using normalized plots. only 7
traces per plot were obtained. This was considered
sufficient to demonstrate the wvalidity of the theory
presented as the FM law is determined remarkably
easily and with an extremely good accuracy.

It was observed that 1increasing the spectral
resolution from 200 to 800 lines did.’ not
eliminate all the spurious —peaks.

6. DISCUSSION AND CONCLUSION:

This paper has demonstrated how a modified
wigner-ville Analysis could substantially improve
the spectral resolution achieved by the WVD. The
high-resolution spectrum estimator incorporated is
arbitrary, hence the problems of spurious peaks were
ignored for the time Dbeing. once we have
established the plausability argument, it is then
just a matter of optimizing the algorithm for
estimating the PSD. This can be done in several
ways, elither by choosing another method such as
Prony's method or by improving the SVD based PSD
estimator. The argumentation for choosing Prony's
method is that the SVD spectral estimator is not
linear, which means that the relative amplitudes of
spectral peaks are not preserved, when one varies
the size of the window. In most applications, it is
important that this property be observed.

Nonetheless, the initlal results obtalned were quite

encouraging and further investigation of the

existing MWVA algorithm 1is warranted so as  to
optimize this method of Time-Frequency Signal

Analysis by:

a) Varying the order of the model P, and checking
the 1limit of the insensitivity of the model,
that 1s define a precise rule for an optimum
choice of P.

b) vVarying the threshold below which
values are discarded.

singular

In fhe results presented, the model order was set to
a value. of N/3, where N 1s the number of samples in
the windowed portion of the signals.
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