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RESUME

Ce document discute deux methodes, le filtre Kal-
man (KF) et une detection technique eventuelle pour
decouvrir les signaux harmoniques avec le variable temps
du developpement de bruit. Premierement, en supposant
que les sinusoides additionnes du bruit modele, nous
employons une methode de Pisarenko (PHD) pour la
decomposition harmonique afine d’eliminer les sinusoi-
dales frequences. Ensuite, ’evaluation du courrant de
frequence est alimentee dans les algorithmiques KF ou
ED pour P'apres-developpement. Le but est de trouver
une trajectoire adoucie des frequences harmoniques. La
trajectoire evalucee facilite la prediction des valeurs des
frequences. En terme, cette information pourra etre
alimentee en retour pour la methode PHD adaptee
comme une nouvelle condition initiale. Esperablement,;
en faisant ainsi, les meilleures evaluations de frequence
peuvent etre obtenues.

I. INTRODUCTION

In many adaptive estimation problems, it is often
assumed that the additive observation process is a (wide
sense) stationary random process with constant vari-
ances. Hence, the signal-to-noise ratio (SNR) remains to
be constant even the harmonic frequency may vary with
time. However, in practical applications such as sonar or
radar, where harmonic frequencies tracking techniques
are employed, it is not unrealistic to assume time-
varying SNR which accounts for the variations of the
estimated signal strengths with respect to ambient noise.
This problem not yet been fully addressed in high resolu-
tion spectrum estimation researches. The major
difficulty is to explore parameter changes at the presence
of noise. There is always trade off between sensitivity (to
change of underlying parameters) and stability (immune
to noise disturbances) in adaptive signal processing.
However, in many situations, there are additional infor-
mation about the behavior of the harmonic frequencies
which may help better predicting, estimating the actual
frequency trajectories. What is needed, then is a tech-
nique to incorporating such information into the estima-
tion procedure. In this paper, two potentially promising
techniques are investigated for this purpose.

Briefly speaking, we take on a two pahse approach:
First use an adaptive Pisarenko Harmonic Decomposition
(PHD) method to obtain a crude estimate of the frequen-
cies. In general, the result will be quite noisy due to
short data record and SNR variations. Then the results
will be fed into a post-processing unit to unveil the tra-
jectory information of the underlying frequencies. Two
methods are employed for experimentation. One is the
conventional Kalman Filter (IKF) algorithm, the other is
a new Event Detection (ED) algorithm. Both of these
two methods can handle time varying data sequences
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and hence seem to be good candidates. However, they
differ in a number of places: the Kalman filter algorithm
is a statistical approach which requires a dynamic system
model to describe the behavior of the frequency. Each
time, an optimal estimate will be computed. Event
detection method, on the other hand, employs an
artificial intelligence planning strategy called least com-
mitment. The idea is to hold off a decision until the last
minute. As a result, at each time instant, a set of line
segments will be kept to represent all possible choices
(with certain confidence). As new data are observed, the
set of feasible solution will be pruned out leaving a set of
more restricted solutions. We intend to compare the
performance of both these methods.

Below, in section II, the adaptive PHD method will
be briefly surveyed. Then, the Kalman filter formulation
will be presented in section III. The event detection pro-
cedure will be discussed in section IV.

II. ADAPTIVE PISARENKO HARMONIC
DECOMPOSITION FOR
ESTIMATION ESTIMATION

Let us begin by defining a harmonic process model
for the time-varying tracking problem. Assume that the
observed time series data {x(t)} is composed of p com-
plex sinusoids with additive noise {w(t)}:

x(6) = 33 A4 wit) (1)

i=1

where (A; w; ¢;) denote the amplitude, the frequency, and
the initial phase of the i-th sinusoidal signal. {w(t)} is
assumed to be a white, Gaussian, zero mean process with
an unknown variance {0o?}. For the frequency track-
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ing problem, often one has to assume w; changes slowly
with respect to time, and hence should be denoted as
wt). With this model, the objective is to estimate the
current harmonic frequency @it) from the observations
(x(0)}-

Our approach is this: First, based on the observa-
tions {x(t)}, a raw frequency estimate y(t) will be com-
puted using an adaptive PHD method. Then, y{t) will be
fed into one of the two frequency tracking algorithms
(namely, KF and ED) to produce an improved frequency
estimate &(t) as well as a prediction of the next fre-
quency estimates @;(t+1 | t). Finally, the new frequency
estimates will be fed back to the adaptive PHD algo-
rithm to produce y(t+1). -

In this section, let us summarize the adaptive PHD
method [4]. To take into account the effect of time vary-
ing frequencies, we compute a time varying sample
covariance matrix of {x(t)} using the formula:

R, (t+1) = AR, (t) + (1-N)x(t+1)x"(t+1) (2)

X is called the forgetting factor. Suppose a(t) is current
estimate of minimum eigenvector of R,(t). The new
minimum eigenvector estimate can be calculated as:

b(t+1) = a(t) - uRy(t+1)a(t) (3)
a(t+1) = b(t+1)/ | b(t-+1) | (4)
when A = 0, above equation is known as the adaptive

line enhancer [5]. Other adaptive PHD formula can also
be applied [4]. u is an adaptation constant whose value
should be bounded by the inverse of the maximum eigen-
value of the R, ( AE{R(t)}) matrix [6] to ensure the
convergence. For each a(t), an eigen-polynomial

a(z) = [1 2z 2% ... 2P |a(t) (5)
can be formed. The roots of the equation a(z) = 0
should locate on or close to unit circle |z| = 1 on the

complex z-plane. The arguments (angles) of these roots
thus will be taken to be the current estimates of the har-
monic frequency estimates {y;(t)}.

It has been reported that the PHD method is sensi-
tive to statistical and numerical perturbations [7]. This
effect is amplified by the use of above adaptive formula
for computing R,(t). As a consequence, the frequency
tracking performance of the adaptive PHD method will
be less satisfactory. Furthermore, steady state tracking
error is also a function of the signal to noise ratio of the
observations. Recently, we have found that the variance
of the sample frequency estimates is a function of both
the SNR and the underlying frequencies [7]. Specifically,
at low SNR, the estimation error is large. While at large
SNR, the estimation error tends to fluctuate with respect
to frequencies. Therefore, the frequencies computed
using adaptive PHD method can not properly portray
the trajectory of the true frequencies. This motivates us
to look into other approaches which may improve the
performance.

For convenience, let us assume that there is only
one real sinusoidal signal (p=2), w(t) = w)(t) = - wy(t).
Thus, the subscript ”i” in frequency estimates {y;(t)} can
be dropped. Now, each y(t) can be regarded as an
imperfect (noisy) observation (computed from the adap-
tive PHD method) of the true frequency w(t), with time
varying variances. The objective is to find the best esti-
mates of w(t) based on given {y(t)}.

Two approaches will be discussed in the following
sections. The first method assumes an internal dynamic
equation for w(t) and apply conventional Kalman filter
to smooth the noisy observations {y(t)} in order to pro-
duce a set of smoothed observation {w(t)}. The second
method assumes the knowledge of the variance of y(t)
for each t, and maintain a set of straight lines as piece-
wise linear approximation of the trajectory of w(t). Thus,
a range of possible values of w(t) will be computed rather
thran a single value. These methods are now outlined
below:

II. KALMAN FILTER FOR
FREQUENCY TRACKING

Kalman filter (KF') has been applied to many target
tracking problems in the past [8]. Briefly, Kalman filter
is an optimal state estimator which assumes the observa-
tion (input) is generated from a known dynamic system.
In this paper, we assume that the true frequency w(t) is
the state of a dynamic system described by the following
equations: '

w(t+1) = v(t)w(t) + v;(t) (6)

¥(b) = w(t) + vo(t) (7)

where v{t) is the system model driving noise and v,(t)
is the measurement noise. The state space matrix (scaler
in this case) v(t) is assumed to have magnitude less than
unity to ensure convergence. The model parameters v(t),
o2(t) (AVar{v,(t)}), and o (t) (AVar{vy(t)}) have to be
estimated indirectly from frequency estimates {y(t)} as
described later. With above state space model, the Kal-

man filter equation can be summarized as follows: First,
the state vector update equation:

St+1 | t)=p(t)o(t | t-1)+G(t)[y(t+1)}-w{t)o(t | t-1)](8)
Here G(t) is the Kalman gain which is defined as:
G A (6Kt | t~1)
K(t | t-1) + o%(t)
where the predicted state-error correlation matrix,
K(t,t-1), is updated according to the formula:
K(t+1 | t) = p(t)o(t)G(t) + o (t)
The scaler state space matrix (t) and state driving noise
variance o(t) can be estimated from the sample covari-
ance lags of the state vector estimates @i |i) (i < t).

The covariance lags are computed iteratively with an
forgetting factor A;:

bt 1) =X yr(m, 6+ (10, Jot | )" (6-m | 6-m) ()

where m = 0, 1. &t|t) A O(t+1]t)/u(t). With
r,(0,t+1) and r,(1,t+1), »(t+1) and oZ(t+1) are com-
puted as:

U(t+1) = r,(1,6+1)/r,(0,t+1) (10)
o2 (t+1) = 1 (0,641) — p(t+1)r,(1,t+1) (11)

These approximation equations are derived by assuming
{w(t)} to be a first order Auto-Regressive (AR) process
where 1(t) is the first temporal correlation coefficient and
012 is the temporal driving noise variance.

The variance of observation noise process, o(t) is
estimated iteratively from the prediction error term
[y(t)-at | 1))

o (t+1) = Nyog(t) + (1 - Np)ly(t) - @(t | t-1)]* (12)



ONZIEME COLLOQUE GRETSI - NICE DU 1er AU 5 JUIN 1987

Using the KF prediction formula (8), each time an
@(t+1 | t) will be computed for given y(t) as a prediction
of the next frequency w(t+1). This estimation is sub-
optimal since the model parameters 1(t), o(t), and o(t)
are unknown and have to be estimated from data. To
make use of the prediction, we may form a predicted
eigen- polynomial

o) & M- ep(o+t |0)  (13)

The coeflicient vector of 4(t,z), denoted by 4(t), then will
replace the a(t) in (3) to facilitate the computation of
new adaptive PHD estimate.

Discussion: The KF approach outlined above essen-
tially performs two tasks: (a) To smooth the frequency
estimate trajectory via the robust update formula (8). (b)
To provide a new initial condition for each adaptive
PHD iteration which depends directly upon the fre-
quency estimate. Because of (b), a prior information
about the system dynamics of w(t) can be effectively util-
ized to improve the frequency estimate. Finally, the time
varying formulation of the KF is very suitable to practi-
cal situations where time varying SNR is encountered.

IV. EVENT DETECTION METHOD
FOR HARMONIC FREQUENCY TRACKING

Event detection (ED) method [] is a method
derived to track trajectories of multiple objects. In this
method, it is assumed that each observation y(t) will
experience some measurement error with known upper
and lower bounds. That is, there exist oy and f, such
that

oy < Y(t) < ﬂt

The objective of the ED method is to produce a piece-
wise linear approximation of the trajectory {y(t)} as a
function of time t. It is required that the line segment at
time t should also be bounded by [e, 8. It is also
desired to minimize the number of line segments used.
The unique feature of the ED method is that at each
time, the set of all feasible solutions (line segments) will
be maintained. Each additional data observation y(t) will
impose additional constraints on the set of current feasi-
ble line segment and therefore reduce the number of
feasible line segments. If the feasible solution set reduces
to an empty set, it produces an event. In general, an
envent signals that the new data deviates significantly
from its previous course and a new line segment should
be assigned to fit the following data. The ED method
can easily be generalized to handle other pre-determined
trajectories.

The key of the ED method is to find the error inter-
val {o4, B}. In this paper, we assume:

¥(t) = a, = B, - y(t) = Std.{y(t)}

where Std.{y(t)} stands for the standard deviation of
y(t). Hence, the interval [y, ;] can be regarded as a
confidence interval of the estimate y(t). In adaptive PHD
method, the standard deviation of y(t) is not available.
Two methods can be used to estimate this quantity:
First method is to compute the sample mean and hence
sample variance of y(t) using, perhaps, an exponential
window:

Var{y(t)} = XgVar{y(t-1)} + (1 - Ag)ly(t) - ¥(t)I?

() = Ag¥(t-1) + (1 - Ag)y(t)

The second method relies on a recent result reported by
the authors regarding the empirical variance of PHD fre-
quency estimates as a function of frequencies and SNR.
Thus, by table look-up and interpolation, it is possible to
estimate roughly what the variance of y(t) will be. In
practical application, the first method seems more favor-
able as it relates directly to sample data.

With the knowledge of Var{y(t)}, o; and B, can be
estimated for each y(t). This facilitates the application of
the ED method: Let y(t) = mt + b be the family of all
the straight lines passing through y(t) with slope m.
Clearly,

a Smt+b <G,

Equivalently, we have two inequalities:
b < —tm + G,
b > —tm + o

In the {m,b) plane, above equations represent the interior
region between two parallel lines both having the same
slop -t. Each point with this region represents a feasible
solution. Now, given the next observation y(t+1) and.
associated {o,y, B4}, 2 similar interior region can also
be identified in the (m,b) parameter plane. However,
these new parallel lines will have slop -t-1 instead of -t.
Thus, these two pairs of parallel lines form a quadrangle
of which each interior point represents a feasible solu-
tion. As the next data y(t+2) arrives, a new set of
parallel lines (with slope -t-2) will be generated. The
intersection between the two parallel lines and the inte-
rior of the quadrangle will be the set of feasible solution.
As more and more data points are collected, the intersec-
tion will assume a polygon shape and reduce in size. To
accomplish this, a polygon-update algorithm is
developed. Due to space limitation, the detail of this
algorithm has to be omitted in this paper. When, at last,
some arrives such that the interior of corresponding
parallel lines does not have any intersection with the
polygon, an event will be flagged. An event is an indica-
tion that the new data (frequency) is about to change its
value so that previous line segment can no longer fit this
data point within the given bounds. At this moment, we
will initiate a new line segment for the current y(t) and
repeat previous procedure. The union of all the line seg-
ments thus will be a piece-wise linear approximation of

the frequency trajectory.

V. CONCLUSION

In this paper, two methods (KF and ED) are pro-
posed to enhance the performance of adaptive Pisarenko
harmonic retrieval techniques. Simulation results will be
presented in the conference.
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