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RESUME

Nous proposons une nouvelle méthode efficace

" pour obtenir un estimateur convergent du spectre
mixte de signaux pouvant é&tre représentés par un
modeéle non-harmonique général. Cette méthode est
fondée sur une régression récursive sur des G-

harmoniques amplifiés. Nous en donnons quelques

résultats d'application.

MOTS CLES : estimateur convergent, modéle non-
harmonique, ARMA,

1 - Introduction

The problem considered herein is the estimation of
the spectrum of a signal X, that can be additi-
vely decomposed into an oscillatory component Ht
and an "irregular" component z, from part of a
realization of the signal, say xt s, t = 1,...,N,
We assume that the Ht component can be written

as Ht = 'gl Cj cos(wjt + Qj) (1), where the ampli-
tudes Cj 2 the phases Qj’ the angular frequencies
or pulsations mj and the number m are unknown,
with the wj's being arbitrary in C(O0,m]. The
"irregular" part is assumed to be a stationary pu-
rely non-deterministic ARMA process, that we
shall briefly call regular ARMA. (The case where
z, is some non-stationary ARMA has been studied
in [41). In other words, the signals considered
herein are assumed to be represented by the follo~
wing general non-harmonic model X, = Ht + z, (2)
where Ht satisfies (1) and z, is a discrete re-
gular ARMA (p,q) process. By extension, each sinu-
soid in (1) will be termed G-harmonic.

The non-harmonic model that is commonly adopted in
most of recent works is a special case of (2), in
which z, is a white noise. For this model, two
techniques for estimating line spectrum are well~
known, that are the Pisarenko harmonic decomposi-
tion and the extended Prony method (see [2]). The
first one requires complex calculations and is com-
putationally expensive. The second method consists

in estimating the model parameters by least squares
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(LS) criterion and in solving this non-linear LS
problem in several steps. The deficiency of this
technique is that the LS estimates of the autore-
gressive (AR) parameters in its AR filtering
step are inconsistent. Another technique for estima-
ting mixed spectrum is the Whittle method (see [11)
that gives consistent estimates. However, when the
number of G-harmonics is greater than two, it leads
to intractable calculations. We present here a new
efficient method to estimate the mixed spectrum of
signals of the form (2). The theoretical aspect and
an algorithm of the method are first described, then

some numerical results and illustrations are given.

2 - Least squares estimates on amplified G-harmonics
Since several methods are now available (see e.g.
[3]) to get consistent estimates for the parameters

of regular ARMA processes, the problem of estima-
ting the mixed spectrum of a signal X, of the form
(2) amounts to that of identifying the G-harmonics
in (2). In this aim, we introduced in [5] the no-

tion of G-harmonic amplifiers, that is stated below.

Proposition . For each j = l,...,m , let aj =
cos(wj) and let Bj be some real. Define Ej(t) as

the unique solution of the following equation
(8) = 2B, £ (t=1) + £_(t-2) = x (3)
£(8) = 2B, £, (t=1) + E,(2) = x,

with the initial conditions Ej(to-l) = Ej(to)=0.(4)
If Bj = aj, then Ej(t-’rto) = Uj(t+to) + Zj (t+to) R

t 21 where
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. -1 . n
Uj(t+to) (2 sin mj) CjEt 51n{wj(t+l)+¢j}
. -1, . .
(sin wj) (sin ¢j)51n(wj(t)] (5)
-1 t-1
Zj(t+to) = (sin wj) kZo Esin(k+1)wj} X
m
Y C ocoslw (t-1-K)+ & }+z . 7 . (B)
hel ngg B h et Peorok

Since the first term in (5) is an oscillation
with pulsation wj , the amplitude of which quasi-
linearly increases with t whereas the amplitude
of the G-harmonics other than the jth remains
constant in time (see (6)), hence the Ej(t) pro-
cess will be called harmonic amplifier relative to

Bj when Bj is near o, .

The notion of Recursive Least Squares on Amplified

Harmonics (RLSOAH) estimates is now defined.

Definition. For each j = L,...,m let {aj’n }nEN

be the sequence defined over the set N of non-ne-

gative integers as follows

(1) a. = O, where o, is some initial esti-
Js0 ] ]

mate for aj .

(ii) For any n € N , & is the LS estimate

jsntl
for aj defined by the regression equation
. t) + &, t-2) = 2a, . t-1) + e, t)
€5 o(8) + By (e=2) = 20, £, (e-1) + g (6)
tzt
o
where e, (t) is the error term and the &. (t)'s
Jsn Jsn
are the unique solution of (3), in which Bj is
replaced by aj n’ with the initial conditions
’

(4). Note that the Ej n(t)'s depend on &, The
b

jsn’
{&j n} is called the sequence of RLSOAH estima-
’

tes for . o, .
J

The following basic result (see [5]) establishes
for each G-harmonic j , the convergence of the
RLSOAH estimates {&j n} towards o  up to
-1 4
o(m7) .
p(

Theorem. For any j € {l,...,m} and for any gi-

ven n €~1\I , let aj~ = aj,n and aj =~ aj,n+l
Define w. = Arcos(a.) € [0,7], &8, = w, —w, .
J ] ] J J
If Gj = O(N_l) and if N is sufficiently large,
then either &, - a, = O (N—l) or |G.,-a.| =
J J P J 1

(1-R,) |a,-a,] with R, = r,
J 3] J J
being a real satisfying O < rj <1

-1
+ N d .
Op( Y an r:J

The theorem yields a very simple procedure to per-

form consistent estimates for the pulsations w, ,

since for each G-harmonic, e.g the jtn , it con-
sists of iterations of the following schema, called
one RLSOAH operation :

(1) Perform the 5j n(t) amplifier relative to

>

Jon
(2) Compute the aj,n+1

.

by the formula

) e L (4 ey £ o]/
2
26, L (t=1)

The convergence criterion is |§, o
jsnt+l Fun

Generally, € can be choosen equal to 10_8. For each
G-harmonic, the number of RLSOAH .operations neces-
sary to obtain convergence with ¢ = lO_8 is about
25 when starting with improper initial estimates
(see [61)., For series X, that contain some G-har-
monics with great amplitudes and the others with
most weaker amplitudes, we associate with the prece-
ding RLSOAH schema, an additional step that redu-
ces the effect of the greater G-harmonics and thus
derive an efficient algorithm called recursive re-
gression on amplified harmonics (RROAH) for estima-
ting the G-harmonics in (2). This algorithm can be
outlined as follows. (For a detailed description,

see [63).

Step 1. Starting with initial estimates Tysee s O >
g 1 m

we perform RLSOAH operations on the series X
then identify the number s of the dominating G-
harmonics (called of the first level) and obtain

primary estimates &l""’&s for the aj's

Step 2. An improvement of the primary estimates 5%
and a reduction of the effect of the G-harmonics
identified in step 1 are here achieved (if s >2)
by means of a LS technique (the details of which is
given in [61) that yield final RLSOAH estimates
al""’&s and a series, say ;t’ which corresponds

A\l

to the residuals of the x.'s after removing the G-

harmonics identified in step 1. The estimates Qj

of the uﬁ's are then computed by &j = Arcos(&j).
Step 3.Since all the remaining G-harmonics are in

]

the residuals ;t , we replace the %, s by the

; i
C — —
mates Qoprree o0y and identify new G-harmonics,

s then iterate steps 1 and 2 with initial esti-

called of the second level. The procedure is thus

continued until all the G-harmonics in the x '

s
t

are identified.

3. Some numerical resultats and illustrations

We now illustrate some properties of the RROAH pro-
cedure on 4 following simulated series with two G-
harmonics and with the same length N = 98 ., They are

of the form

>

x, = Clcos(Znt/Pl) + C

¢ cos(Znt/Pz) + z

2 t

where z, is an MA(l) process with the parameter

© = 0.7 and the noise standard deviation ¢ = 0.2.

Series Bl : C1=15, C2=3, P1=14.4, P2=6.5
Series B2 : Cl=15’ C2=14, P1=14.4, P2=6.5
Series B3 : C1=15, C2=0.4, P1=14.4, P2=6.5
Series B4 : Cl=8’ Cz=7, P1=6.5, P2=6.87.
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1) The accuracy of the RLSOAH estimates is very

satisfying. For example, for series B2, the esti-
0.90617 (P, = 14.389) and

mates are Q 1
= 6.501).

1
& = 0.56823 (P2
2) Even when the initial estimates are far from the
RROAH procedure converges to the

Bl, with the

true values, the
same limits. For instance, for series
following initial estimate 51 = - 0.955, 0.148 or
0.891, we gbtain the same value for &1 , namely

0.90619 (P
in (63

L= 14.39) . (Further results are given
as well as methods to obtain the initial

estimates &j ).

3) TFor

accuracy of the

G-harmonics with very weak amplitudes, the
RLSOAH estimates remains very sa-—
tisfying. For example, with series B3, the second
G-harmonic of which has an amplitude nearly equal
tg the noise deviation o , we obtain &1=0.90618
(P1=14.39) 6.,=0.56625

at the first level and 2
(P2=6.48) at the second level.

4) According to the theorem, the RROAH procedure
has a good frequency resolution in a certain range
of frequencies : Two frequency peaks, say at wi
and wj » such that Iai—aj| > 1/N , can be easily
distinguished by the RLSOAH estimates. Thus, with
series B4 that contains two periods P1=6.5 and
P2=6.87 near each other, we fbtain &l=0.56424
(P,=6.47) and 8,=0.61425 (p,= 6.91).

The RROAH estimation procedure was also success—
fully applied to analyse spectrum of actual data,
since with this method, we have shown that the loga-
rithmically transformed series of the well-known
Canadian lynx trapping series has a mixed spectrum
constituted by two G-~harmonics at the periods 9.62
and 5.13 and by the continuous spectrum of an
AR(2)

application and further complements, we refer the

process. For the detailed results of this

reader to (6] .
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&l—amplifier of series Bl

with a; = 0.9061965
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Fig.3. az—amplifier of series B4 with &2 =0.618801
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