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RESUME

L' estimation des paramétres MA est la partie la
~ plus dificile en modelization ARMA. Tandis qu' il ya
assez d' algorithmes efficients pour le calcul des
parameétres AR, il n’ existe point d' algorithme avec une
efficacité semblable pour I estimation des paramétres
MA. Ceci se passe car le calcul MA est essentiellement
un probléme non linéaire. D' autre c6té dans la plupart
des procédes, 1 estimation des paramétres MA est faite
aprés une filtrage par le filtre AR Ceci a, comme
consequence une grande influence de la partie AR sur la
MA Le méthode le plus commun est réporté avec ses
difficultés principales. D' autres deux algorithmes sont
décrits qui donnent des solutions. pour quelques
désavantages qu’ ils présentent.

1. INTRODUCTION
The usual approach is based on the high order
Yule-Walker eguations, which we are going to obtain.
Let x, be the output of a time-invariant ARMA(N,M)

system driven by stationary white noise. The system is
described by the difference equation:

ga..x .= c’ib.,e i . (1.1)

where a, (i=0,..,N) , with ao=l, are the AR parameters,
b; (i=0,..,M) , with by=1, are the MA parameters and e,
is the white noise with variance o Following a
common practice, X, is assumed to be a zero mean

signal. We will assume also the system to be stable and
minimum phase. We begin by multiplying both sides in
{1.1) by Xn- (j=0,1,2,.. ..) and taking expectation

values to ogltain:
23 R(j-1) = \ j20 (1.2)

where R is the autocorrelation function (ACF) of Xn and
v is given by:
J M
Vj = 0'2 EJ blh]‘j OSJSM
=0 PM (1.3)

where h; is the impulse response of the ARMA system.

The AR coefficients are obtained by solving the high
order Yule-Walker equations obtained from (1.2) with
j=M to j=N+M. The correlation of Vj with aj gives the
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SUMMARY

The estimation of the MA parameters is the most
difficult task in ARMA modeling. While there are a lot
of efficient algorithms for the computation of the AR
parameters, no algorithm exists with equivalent
efficiency for the estimation of the MA parameters.
This happens because MA computation is an essentially
nonlinear problem. On the other hand, in most
procedures, the estimation of the MA parameters is
performed after a filtering by the AR filter. This has as
consequence a great influence of the AR part over the
MA one. The usual approach is reported together with
its main difficulties. Other two aigorithms are
described, which solve some of the drawbacks
presented by those.

ACF of the MA part:

M-k
RMA(K) = Szgo bi'bi+k
=¥ %2 8 RK-(-)1 k=0, .., M (1.4)
izo lro .]

The computation of the MA parameters is achieved
by spectral factorization.

A close ook into eq. (1.2) and (1.4) shows that:

a) To compute the ARMA(N,M) parameters and the
white noise variance we only need the first N+M+1 ACF
values [ R(n), n=0, ... , N+M}.

b) The AR parameters do not depend directly on the
MA parameters, but only on the MA order.

¢) The MA parameters are strongly AR-dependent.

We are going to pay a special attention to the last
statement, because it is the main source of problems in
ARMA modeling. in fact, most methods use, directly or
indirectly, equations (1.2) and (!.4). This means that
the estimation errors will affect the ACF of the MA
part and, as consequence, the MA parameters. We will
consider methods with such base as Yule-Walker
methods (sec.2). The associated factorization probiem
will"treated too.

Recently, a new method appeared which computes
both the AR and MA parameters in a decoupled way. We
will call it "Duai” method and will present it in sec.3.
At last a method proposed by the author and called here
recursive method is presented. In this case, two "MA"
polynomials are computed simultaneously with the AR
polynomial. The MA polynomial is computed as the
asymptotic limit of one of those polynomials. The
limiting operation is performed in a recursive way
{sec.4). in sec. 5 we will present some conclusions.
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2- Yule-walker methods

a) AR computation

Most ARMA methods are based on equations (1.2) and
(1.4). As referred before, the main problem in this
approach is the influence of the AR part over the MA.
This cannot be avoided in this context, but it can be
alleviated by better AR estimates. The use of
overdimensioned high order Yule-Walker equations
together with SVD algorithms (see [31,[4] and [S]} could
increase slightly the performance of the estimator.

b) MA autocorrelation computation

Recently Moses and Beex published an excellent
survey about MA computation. From it, one can conclude
that the best methods used in this context are obtained
by computing the biased ACF estimate of the forward
and backward time series obtained by filtering the
original series by the AR filter. if the length of the
series is not enough high, a lag window must be used to
prevent against a2 nonpositive semi definite
autocorrelation. Instead of a window, we suggest the
use of the unbiased autocorralation estimate and slight
increases of R(O) when the factorization algorithm
fails to converge pointing out an ACF matrix non semi
definite positive.

c) Spectral factorization

Once we computed the ACF a spectral factorization
is needed to compute the MA parameters. We are going
to describe briefly two of the known methods: Wilson
[1} and Le Roux-Grenier [3] methods.

c1) wilson algorithm

This algorithm, described by Box and Jenkins [1]
computes the MA parameters ( b, , i=1,M} and o?
iteratively by adjusting them in order to minimize the
error energy: n
E="5__1[ R(N) -2 2, b, 17 (2.1)

using a quadratically convergent Newton-Raphson
algorithm.

€2} Le Roux-Grenier algorithm
This a very ellegant factorization algorithm. It iIs a
consequence of Levinson recursion. Let us describe it.

Define two polynomials B"(z) and B"(z) by:

Bi(z) = b, 7" (2.2)
Bz =% 27 (23)
with -
b = B,=RGVRO)  i=1,..M (2.4)
by= 1, By = 0

These polynomials converge asymptotically (N— o)
to the MA polynomial and to zero [9)], respectively and
verify the following recursions:

By(@) = [ By () - K¥ 28 (2)]/ ¢ (25)
B\(@) = [z By,(2) - K¥By (@) 1/ ¥ (26)

where K is the reflection coefficient ( RC )
which is computed in such a way that the zeroth order
coefficients of Ef;(z) and ﬁ;,(z) are one and zero,

respectively:

K=z i@ @27
or, the 15t order coefficient of B:_,(z) and qg is given
by:

qy=1-(xh?2 (2.8)
Result (2.7) is very important since it shows that the
RC sequence is extrapolated. The convergence can be
assured and it emerges as a consequence of the
increasing order predictors [12]. Another interesting
result can be obtained from (25) and (2.6). Define a
spectral function S:(z) by:

SN2 Br@). Bz - Bi(2) Bz (2.9)

if we use (2.5) and (2.6}, we obtain:

SN2 = S, 2)7 (g ) (2.10)

Both members of (2.10) are, aside a constant,
SM A(Z) the spectral function of the MA part. We arrive

to this conclusion by noting that (2.10) is valid for all
N and - "
S.(2)=BL(2). B,z = B(2). B(z™") = Sy (2).
The extrapolation of the RC sequence allows us to
compute the white noise variance by:

62 = R(0). ﬁ[ 1- (K2 ] (2.11)

3 - Dual method

Consider eq. (1.2) again. As seen previously, this
equation allows us to compute the parameters of an
ARMA minimum phase model. We are going to do some
algebraic manipulations to obtain an equivalent, but
more useful, set of equations. We begin by remembering
that the inverse of the autocorrelation matrix can be
expressed as:

R '=copc’ (3.1)

where C is a lower triangular matrix whose columns
are the coefficients of the predictor error filters of
decreasing orders and D a diagonal matrix of the
inverses of the prediction error powers in decreasing
orders [2]. The substitution of (3.1) into (1.2) allows us
to obtain:

) Mya : .
ZWCp = (D §=0,..N
= 0 JN#1, L NEM (32)

= M o i - M
where C,; = p;7c ' for i<j and C;;=0for j, 7y 1 are
the (N+M-i)th order predictor coefficients, a(j) are the

coefficients of the (NM) AR polynomial and wi(i)
M(0) =1) are the components of a vector w given by:

(w,
w=DClv (3.3)

with v given by (1.3). It is not hard to prove that wi(i)
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(i=1,..,M) converge asymptotically to the MA
parameters {[10] and [13]). They are the solution of the
system formed by the last M+1 equations in (3.2). This
algorithm has two advantages over Yule-walker
approach:

1- The substitution the ACF by predictors or,
equivalently, by RC's. This is an advantage of (3.2) over
(1.2) since we know several efficient algorithms of
linear prediction 1], [2], 6] and [7). The problems posed
by the ACF are well known [2].

2- We avoided the spectral factorization to find the
MA parameters.

in a similar way, one can easily obtain:

~;
N - wMii iz
g a (i) Fy; w, (1 j=0,....,.N
= 0 =N+, LN (34)
where Fji are the elements of a matrix F given by:

F=C! (35)

Now the AR parameters are the solution of the last

N+1 equations in (3.4). In [10]} and [13] overdimensioned

- matrices are used in {3.2) and (3.4). Their least-squares

solutions can be obtained in a “1ag” recursive way. This

is valid for both AR and MA estimations. This decoupled
computations explains why the method is called "dual”.

4 - Recursive method

a) A Fundamental Relationship
The algorithm we are going to describe in the
following is based on the fundamental relationship [12}:

A2) = BU2).P¥M2) + B 2V P (4)
where:
~ LAV .
Ay(2)= 2 g4(i). 27 (42)
Bi2)= 3 bliCi). 27 (43)
Bllz)= 3 B, 271 (4.4)
PNM(z) = 3 pMM(i). 2 (45)

with £,(0)=1, bf}(0) =1 and B[}(0) =0. PNM(2) is the
(N+M)th order linear predictor, A;(z) is the ARMA(N,M)

AR polynomial and, if M is the correct MA order, the
polynomials Bf}(z) and B8[(z) converge to the MA
polynomial and to zero respectively, as N goes to
infinity [12]. The relation (4.1) shows that the AR
polynomial is a vector in the space spanned by the
(N+M)th order forward and backward predictors. Eq.
(4.1) can be obtained from (1.2) by the use of
Gohberg-Semencul formula to express the inverse of
the autocorreiation matrix (Bl

b) Recursive Computation of the AR Parameters

The algorithm to be presented can be found in [12]
and can be obtained from (4.1).

Define Af(z) = PN(z). The ARMA(N,M) AR polynomial,
AN(z), can be computed recursively by ( see [12] and
[14]}:

Al2) = A l@) + 1y 27! A (46)
where u}fl is obtained by forcing the (N+1)th coefficient

on the RHS of (4.6) to be equal to zero, leading to:

~
=K/ K, (4.7)
With py=-K}; Kﬂ is the last coefficient of Aﬁ(z) and is

called Generalized Reflection Coefficient (GRC) or
Generalized Partial ACF (GPAC), [12}and [14].

Eq. (46) defines a recursion for the computation of
the AR part of an ARMA model from which we can
conclude that an AR polynomial for a given (N,M) pair is
computed from a set of N+M predictors or RC's.

¢) Recursive Computation of the MA Parameters
Both polynomials By(z) and By(z) can be computed

in a recursive way. This algorithm is readily found by
substituting (4.1) into (4.6) and using,[2]

PN*11(2) = [ PNT(Z) - ki*T1 2N pheti(oTy ]/q",‘ (4.8)
with
ay=1 - (KgM)? (4.9)
So, inserting (4.6) into (4.4) and rearranging the
terms we obtain:

- N ~ Mt
By(2)= Bypy(2) + fyl 2" By - KM B2 ] (410)
B By @ + fq 1B -k 7 Bl ] @1n
with

B(2)= 1and £(2) =0 (4.12)
= iy 7 oY, (4.13)
iy, and qﬁ are given by (4.6) and (4.9).

These recursions allow the computation of the three
polynomials for values of M from M=0 to M=M0 and for N

from N=0 to N= Nn+My-M, where Ny and Mg are
pre-assigned integers that we may suppose to be the

. correct ARMA orders.

Now we must face the problem of the computation
of B,(2). First we note that, from (1.2)

Al = Ae) (4.14)
if M=My and NN,

After substituting (4.1) into (4.14), and using (4.8),
it is a simple task to find:

By = (B, @ -k 28y @ 1/d (419
B2 = [z 8y, @ - KB @1/ ¢ (416)

As the zeroth order coefficients of By(z) and B(2)
are one and zero, respectively, we conclude that:

K-z gy @ (417)

or, the 150 order coefficient of B';_,(z). The similarity

between (4.15) to (4.17) and (2.5) to (2.7) is clear. It
can be proven that the results (2.9) to (2.11) remain

valid here. One must remark that:
1- We only need to estimate N +M, RC's to compute

the ARMA(N,,M,) parameters.
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