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I. INTRODUCTION

The general study of cycle detectors, or
cyclic-feature detectors, presented in [1] strongly
suggests that cycle detectors can outperform
radiometers for signal interception in the presence
of unknown and changing noise level and interference
activity. As explained in [1], the single-cycle
form of feature detector uses a quadratic trans-
formation to regenerate a spectral line from the
received data at some non-zero frequency, and then
it detects the presence of the signal by detecting
the spectral line, which is present if and only if
the received signal contains a cyclostationary
component. In contrast to this, the radiometer uses
a quadratic transformation that generates a spectral
line at zero frequency regardless of whether or not
the signal is present, and it attempts to detect the
presence of the signal by distinguishing between the
strength of the spectral line at zero frequency due
to noise and interference alone and that (at zero
frequency) due to the signal plus noise and
interference. The distinct disadvantage of the
radiometer 1ies in the difficulty of discriminating
between these two strengths when the spectral-line
strength due to the noise and interference alone
greatly exceeds that due to the signal alone and
moreover the larger spectral-line strength of the
noise and interference is unknown and changing. The
purpose of this paper is to carry out performance
comparisons in order to substantiate the proposed
superiority of cycle detectors in particularly
adverse noise and interference environments,

To evaluate detection performance, we adopt
deflection as a measure of detection performance and
doubly stochastic stationary models for the noise
and interference. Deflection is a measure of output
SNR that is particularly useful for weak-signal
detection as explained in [2]. The doubly
stochastic processes are used to model the noise
level (average power spectral density) and
interference strength (average power) as random
variables, Then deflection measures output SNR with
numerator and denominator each averaged over the
ensemble of possible noise levels and interference
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The problem of intercepting weak modulated
random signals corrupted by unknown and changing
broadband noise and narrowband interference is
considered. The measure of output SNR called
deflection is used to compare the performances of

radiometric detectors and cycle detectors which

detect on the basis of spectral lines regenerated
from the signal. It is shown that cycle
detectors can outperform radiometers when there
is non-zero variability in the noise level or the
interference power and the collection time is
sufficiently long. It is also explained that for
sufficiently broadband signals the radiometer
that uses a maximum-likelihood estimate of the
noise level can be outperformed by a cycle
detector.

strengths. If the time-variations of local noise
level and local interference strength were modeled
as slowly varying stationary ergodic processes, then
the ensemble-averaged performance would indeed
properly reflect the more appropriate time-averaged
performance.

11. PERFORMANCE COMPARISONS FOR RANDOM NOISE LEVEL

The detection problem considered here can be
interpreted as the problem of testing the hypothesis
Ho: x{u) = n(u) against the hypothesis
Hi: x(u) = s(u) + n(u), for u& [t-T/2, t+T/2],
where x(t) is the collected data, s(t) is the random
cyclostationary signal to be detected, and n(t) is
doubly stochastic white Gaussian noise. That is,
conditioned on knowledge of the value of the random
power spectral density N, n(t) is a white Gaussian
process. The autocorrelation for the noise is
R, (u,v) = E{n(u)n{v)} = uys(u-v), where p, is the
mBan of N , and s(u-v) is'the Dirac delta. The
fourth joint moment of n{t) (which is needed to
evaluate deflection for a quadratic detector) is

Eqn(s)n(e)n(u)n(v)} = (o§ + uf Js(s=t)6(u-v)

+8(s-u)s(t-v)+s(s-v)s{t-u)l, (1)
in which Isserlis' formula has been used [3], and
where ¢4 1is the variance of N. The random signal
s(t) has zero mean value and its autocorrelation
can be expressed in the Fourier-series form

E¢s{u)s(v)} = R(u,v) = | R:(u_v)efﬂa(u+V) (2)

[+3
by virtue of the cyclostationarity (or almost
cyclostationarity) of s(t) as explained in [11. The
Fourier-coefficient functions in (2) are given by
2/2 s
R(x) & 1in [ R.(t+r/2,t-r/2)e 2™, (3)
S z 772 S

Iy & =

The index of summation a in (2) ranges over the
harmonics (integer multiples) of the fundamental
frequencies (reciprocal periods) of
cyclostationarity, such as carrier frequencies, chip
rates, baud rates, code repetition rates, and their
sums and differences.
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The detectors of interest each perform sliding
(over time t) threshold tests
y(t) > y(£) => H, y(E) < y(E) => Hy, (4)

where y(t) is a possibly time-variant threshold
level, and where the detection statistics y(t) can
be put into the general form
T/2 T/2
yit) = [ kt(u,v)x(t-u)x(t—v)dudv . (5)
-T/2 T/2

For the single-cycle (SC) detector, the kernel in
(5) is given by (1

kSC(u,V) = k%(u,v) 1 Ra(u_v)e-iﬂa(u+v)e12nat’
t t 2T s

UN (6)
and for the multi-cycle (MC) detector [1]

ne>

vy = T Ku,Y) = R (t-u,tev),  (7)
t t 27 [
a g
and for the radiometer (R)
kﬁ(u,V) = kg(u,V)- (8)

We want to use the deflection measure of
performance to compare these three detection
statistics specified by (5)-(8). However, before
proceeding with this, we note that as explained in
[1] these detection statistics can be re-expressed
as

1 T carey*ea
y(t) uﬁT G%E D _£ S XT

where S%(f) is the spectral correlation function
(cyclic’spectral density function)

o _ % ha -i2naT

Ss(f) = _£ RS(T)e dt , ‘ (10)
and Si (t,f) is the cyclic periodogram

T

o 21 *
Se (81 = 3 X, Fra/2)Ke(e, F-a/2) (11)
where

t+7/2 .

Xp(taF) = [ x(u)e 2Mqy (12)

t-T/2

For the SC detector, the set D contains one non-zero
cycle frequency a#0. For the MC detector, D
contains all the cycie frequencies including a=0,
For the radjometer, D contains only o=0, in which
case Sg(f) reduces to the power spectral density
function Ss(f) = Ss(f), corresponding to the

autocorrelation function Rg(r) = RS(T), and Si (t,f)

reduces to the conventional periodogram, (11).$ith
a=0.

The deflection is defined by
) - [EQy(t)[H} - Eqy(t) [Ho3]

[VAR{y(t) [H3 1"/

_in which E{} and VAR{*} denote unconditional (on N)
expectation and unconditional variance,

Substitution of (5) into (13), and use of (1)
yields the formula

(13)

(1)1
uy Lo(t) + oy L (8) + K (£)]°]
for the squared deflection, where

, 12 172
Ks(t) 2 7 f kt(u,v)Rs(t-u,t—v)dudv (15)
-T/2 -T/2

is the expected output due to only the signal at the
1nput,A 1/2
Kn(t) 2 kt(u,u)du (16)

-T/2
is the expécted output, normalized by uys due to
only the noise at the input, and
A T/2 T/2 2
Ln(t) 22 { I lkt(u,v)l dudv (17)
-T/2 -1/2

is the output variance, conditional on N=1, due to
only the noise at the input. Equation (14) can be
re-expressed as

] d(t)
1+ pl1 + K (6) 2L (8)]

d(t)

, (18)

A
where p = Uﬁ/uﬁ , which is the coefficient of

variation for the random parameter N, and
A(e) &k () 2l (1) = 2K ()] (19)
] = 1hg UNEn =2i%s ’

which is the maximum deflection (for each of the
cases SC, MC, R) when p=0, that is, when N is
nonrandom. In obtaining the close approximation
(19), it is assumed that the length T of the data
collection interval greatly exceeds the longest
period of cyclostationarity, “minT >> 1, and is
greater than the largest width Taof the ¢yclic
autocorrelation functions Rg(r), T > max{tg}.

It can be shown that

SC R MC
do (t) < do(t) < d0 . (20)
where the superscript SC indicates deflection for
any (a#0) single-cycle detector. Thus, when the
noise level N is known exactly, the radiometer has
the largest possible deflection compared with all SC
detectors. However, this result (which has been
verified for various ad hoc feature detectors [4]
and forms the basis for a popular bias in favor of
the radiometer) is misleading since as we shall see
the inequality (20) is reversed when N is random and
T is large. Nevertheless, the deflection (19) for
0=0 is a useful benchmark, and it has therefore been
evaluated for various types of modulated signals and
various optimum SC detectors, optimum MC detectors,
and the optimum radiometer (using the formulas for
sg(f) given in [3]). The results are summarized in

Table I for BPSK and QPSK spread spectrum signals in
which the spreading code is modeled as a white
binary sequence, f. is the carrier frequency, Ty is
the chip interval, and the chip envelope is a
full-duty-cycle rectangle. In this table, the
values of deflection have been normalized by the
product of the detector processing gain factor T/T,
and the squared input SNR, SNR?n : [TOPS/ZN]2 where
2/Ty is the approximate signal bandwidth, and Pg is
the signal power. With the preceding assumption
that T > 1/%ip and T >> max{Ty} (and also ol >>

1/25%at, for (d°°)) (16)-(18) yield the close
approximations

43¢ MC

o SC M ~— R R
= 42V Dgp, d 7z dpV Dye, d = dy

where the degradation factors (due to the randomness
of N) are given by

Dge = [1 + 17 (22)

«*Tﬂ;‘, (21)

TLR((0)12 -
DMC = {1 + p[l + - ]] (23)
27 f |83 Par
o =

Tr(0)1% 77t
Dp = {1 + o[l + ]} . (24)

. 2
2 -i [Ss(f)] df
It follows that DSC > DMC > DR and as either p or T

gets larger the strengths of these inequalities
increase. In fact, for any p > 0, as T increases,
the inequalities in (20) will eventually be reversed
SC dMC 5 dR.

to d It follows from (21)-(24) that
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SC
SC d
da” 0 1/2 , —=—
dea?—[T%] ‘/T/O’ (25)
0
where

a VT [RS(O)][Z_iw [s,(f)2%ar ]2, (26)

Example: For3both BPSK and QPSK, we have a = v 3/2.
For T/T, = 10° (a typical value for weak-signal
detection) and p = 1/10 (a modest value), (25)
yields

¢SC /Y3, e
15/% , o

2f, (BPSK only)

®

1/To (BPSK and QPSK).

II1. PERFORMANCE COMPARISONS FOR RANDOM INTERFERENCE
STRENGTH

The detection problem considered here can again
be interpreted as the hypothesis testing problem
described in Section II except that now the process
n(t) models the sum of white Gaussian noise w(t)
(not doubly stochastic) and doubly stochastic
narrowband interference i(t), n(t) = w(t) + i(t).

It is assumed that the bandwidth 2/T, of the signal
of interest s(t) is much broader than that of the
interference i(t), in which case i(t) can be modeled
as a sine wave with time-invariant but random
amplitude and phase, i(t) = acos(2xfit+e). The
phase 6 is assumed to be uniformly distributed on
[-n, =), and the amplitude a is modeled as a doubly
stochastic Rayleigh variable with random conditional

mean square value A 2 E{az}. Thus, the power

= A/2 of i(t) is random, analogous to the random
power spectral density N in Section II. Conditional
on I, i(t) is a zero-mean stationary Gaussian
process, and therefore n(t) is a zero-mean
stationary Gaussian process. Consequently Isserlis'
formula [3] can be used (as in Section II) to deter-
mine the fourth joint moment of n{t) in terms of
only the autocorrelation functions of w(t) and i(t},
Rw(u,v) = Ns(u-v) and Ri(u,v) = uIcos(ani[u—v]).

The model for the signal s(t) is the same as in

Section II, (2)-(3), and so is the class of
detectors to be analyzed, (4)-(12), as well as the
measure of performance (13).

Substitution of (5) into (13), and use of
Isserlis' formula yields the result

d2(t)
Li(t) + [k (t) ]2
PHT 2L ()L (04T /L ()

where p 4 o?/p?, rd 2TouI/N, which is an
jnterference-to-noise power ratio (INR), and

_ TIK (t) ] 2 L,(t) L (07
() = ———1 + (&) oy - e |
( ) 3 [*’ (To) Lw(t) L ( ) ] (28)

which is the deflection when p = 0, that is, when I
is nonrandom. In (27) and (28), K¢(t) is given by
(6)-(8) and (15), Kj(t) is given by {15) (with Rg

replaced by ?%Y—Ri) and (6)-(8), Lw(t) is given by
(17) (with n replaced by w) and (6)-(8), and

, T2 T2 T2 T)2 .
Lty s— [ [ [ ] kelu,vdke(ut,v?)
2u1 -T/2 -T/2 -T/2 -T/2

e

Ri(u,u')Ri(v,v')dudvdu'dv‘ (29)

is the variance of the output due to only the
interference at the input, conditioned on A = 1, and

A T/2 T/2 T/2 N
(t) ]J_ f f I k (U,V)kt(U,V')
I 772 -1/72 -T1/2

Ri(v,v')dudvdv' (30)

reflects the contributions to output variance due to
the cross-product interaction of the noise and
interference in the quadratic detector.

The formula (27) can be put into the forms

&R = ®L b () and ¢°C = sz/ﬁgc Dgele) > (31)

o' "R “R'P
where di and dic are the optimum deflections due
only to white noise (and are given in Table I}, Dé
and DSC

the presence of narrowband interference in addition

to broadband noise, and DR(p) and Dsc(p) are the
degradations due to the randomness of the
interference power level I.

are the degradations in deflection due to

For BPSK (o = 2f;), it can be shown (assuming
T > T4, T> To> 1/fc, and |fj - fc| << f¢) that

11 3r2T swnc(Zf T)
-1 2
(D,(p)]" =1+ - (33)
R 1+ 32T0 + 256TO s1nc(2fiT)
3r2T rT (an T )Zﬁ

[Décj'1 =1 +-§—s1nc(2AfT)[1+IgT sinc(2afT)] (34)

2
-1 psincc{2afT)
Lge(pd1 = 1+ gpp—— T,
3r2T + sinc(2afT) | gt sinc(2AfT) ]

N N (35)
where af = f -f. and sinc(x) = sin{sx)/nx.

For QPSK (a 1/To), it can be shown (with the
preceeding assumptions plus e - fi] << 1/Ty) that

_— 2T s1nc(2f T)
[DR] =1+ 3 + 24r 17—?—7“72‘ (36)
-1 2
(D) 17" = 32T 256To sinc(2f.T) (37)
1+ *
3r2T rT (ancTo)d_
2r?T

[Décj'l =1+55 sincz(T/TO)
T
0

2
v Br/m X s1nc(T/T or2pf T [1+cos(2af T )] 1% (38)

(21 f.)" pe (-1 ,13°

-1 .2 1T2To 1 ., 2
LDSC(p)] =1+ psinc (T/TO) 5 * 5 sinc (T/TO)
2r T
4T /rT 5f-1
r——1] s1nc(T/T o2t T [L+cos(2nf T )] (39)

(2f T )" b &-1,11°

It follows from (32)-(39) that the limiting
values of the degradation factors, as T+w, are

Dé - 32T0/3r2T and  Dglp) » (1+20)"}  (40)
D;C s 1 and Dge(p) » 1. (41)

For both BPSK and QPSK, therefore, the ratio of
deflections approaches the asymptote

(1+2p)T/T (42)
dsc < dR

aSC/aR o r[a3sdR) v

as T»», which indicates that the inequality

SC

will be reversed to d°~ > d for sufficiently 1ong

collection times T.
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Using (31)-(39), the ratio of deflections has
been calculated and graphed as a function of the
collection time T for BPSK and QPSK signals with a
wide range of values of interference-to-noise ratio
(r = 1,10,100) and with coefficient of variation
p = 1/10 and interference frequency fj = f. -1/4T,.
The results are shown in Figure 1,

IV. CONCLUSIONS

The suggestion in [1] that cycle detectors can
outperform radiometers for signal interception in
unknown and changing noise and interference
environments has been investigated by evaluation and
comparison of deflection for these two types of
detectors, It has been shown that for broadband
noise with random power spectral density level N,
the single-cycle detector can outperform the
radiometer when the coefficient of variation of N is
non-zero and the collection time T is sufficiently
Tong. It has also been shown that the single-cycle
detector can even outperform the multi-cycle
detector, which is optimum (locally maximum-
likelihood) for known N, because of the sensitivity
to the variability of N of the radiometer component
of the latter detector.

For narrowband interference with random power
level I, it has been shown that again the single-
cycle detector can outperform the radiometer when
the coefficient of variation of I is non-zero and
the collection time T is sufficiently long.

It has also been established (but is not
presented herein due to lack of space) that the
optimum (Tocally maximum-likelihood) detector that
Jointly estimates the unknown noise level N and
detects the signal, modeled as stationary (rather
than cyclostationary), is a radiometric detector,
and that it can be outperformed by the single-cycle
detector when the signal is sufficiently
broadband.

In conclusion, in interception environments
where broadband noise level and/or interference
activity are variable, single-cycle detectors, in
comparison with radiometric detectors, hold the
promise of providing more effective interception of
weak signals.
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TABLE I

Normalized Deflection for Known N (p=0)

Detector BPSK QPSK
MC _
do V2 1
Multi-cycle
(a1l a) (3 dB) (0 dB)
SC _
do 1/v3 0
Single-Cycle
(a0 = 2f¢) (-4.8 dB)
SC
dg = /= 1/
Single-Cycle
(o = 1/Tg) (-9.9 dB) (-9.9 dB)
R N .
do v2/3 ve/3
Radiometer
(«=0) (-1.8 dB) (-1.8 dB)
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Figure 1(a). Graph of the log ratio of deflections

10 1og(dSC/dR) versus the Tog of normalized collect
time 10 1o0g(T/Ty) for the single-cycle detector and
radiometer for BPSK (a = 2f:) with interference-to-
noise ratio of r = 1, 10, 100, and coefficient of
variation for interference power of p = 0.1,
interference frequency of f; = f. - 1/4T,, and
carrier frequency of fc = 3/T,.
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Figure 1(b). Same as (a) except for QPSK (¢ = /To).



