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Abstract

Seismic migration is a technigue widely used in seis-
mic oil exploration for wave-field reconstruction and
or imacing the geometrical distribution of the refle-
ction surfaces within the earth, from the seismic da-
ta recorded on the surface of the earth. These data
are usually corrupted by noise (white noise, surface
waves, multiole reflections etc.) which degrade the
result of the migration. Another factor which influ-
ences the migration is the inadequate knowledge of
the distribution of the acoustic wave propagation
velocity in the subsurface of the earth. The objecti-
ve of this work is to use estimation theory techni-~
ques to find the optimum estimate of the wave propa-
gation velocity and of the gecmetrical distribution
of the subsurface reflector points.

I. INTRODUCTION

The objective of seismic techniques in oil explo-
ration is to collect information about the structure
of the interior of the earth, such as interfaces be-
tween different rock layers (reflection horizons),
velocity of acoustic wave propagation in the subsur-
fase etc. fram data recorded on the surface of the
earth, These seismic data are processed extensivelv
[1,2],s0 that noise is suppressed and reliable infor-

mation is extracted. Same of the processing techni-

ques used are stacking and deconvolution [1 ,2] . when
this reliable information is extracted an inverse re-
contruction technique called migration is used to find
the distribution of the subsurface reflector points
[1,2,3], Tt consists of two steps:

(a) Wave-field extrapolation

(b) Imaging

Step (a) uses the wave equation to find the wave-field
in depth zo of the interior of the earth. Step (b) co-
1lects the results of step (a) around zero travel ti-
me (&=0) to find the distribution of the reflector
points at depth Zo. Step (a) can be performed nonre-
cursively or recursively {2,3,4]. The recursive wave
extrapolation has the advantage over the nonrecursive
one of taking into account depth velocity variations.
This is very important since the velocity ¢ of the wa-
ve propagation changes considerably fram layer to la-
yer ard generally increases with the depth. A correct
chotce of velocity is very irportant for a correct
nigration. Many migration technicues have been pro-
posed [1,2], but all of them require an accurate cho-
ice of the welocity c. This velocity is usually un-
knowm, but it can be estimated during the stacking
procedure (1] or by other means, such as well-log
techniques [5]. Both methods give only an approxima-
te welocity distribution. This fact limits
the success Of the migration and also of the correct
interpretation of the depth information in the seis-
mic sections. Thus an accurate estimation of the wve-
locity distribution is a very important task.
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Another major problem in seismic sigmal processing
is the reduction of the noise recorded together with
the useful signal. This noise is a combination of ther--
mal white noise, surface waves or multiple reflections,
Yost of the white noise is usually removed by the stac--
king procedure. The multiple reflections can be removed
by appropriate techniques [1,2),like dereverberation.
The surface waves are usually removed by velocity fil-
tering {2,3] . Velocity filtering has several disadvan-
tages. Sometimes noise and signal spectra are partly
overlapping, and moreover the velocity filters used are
not perfect and distort the signal. Thus the problem of
surface wave noise reduction is only partially solved.
The same conclusion is true for the other kinds of noi--
se,since an amount of noise still remains after stacking.

Our apprcoach is to model the seismic experiment and
to use estimation theory [6] techniques to obtain para-
meters of the model (such as the velocity c) and to es--
timate the position and the amplitude of the reflector
soints. The same philoscphy has already been used very
successfully in deconvolution [7] and it will be shown
to give fruitful results in migration.

II. PROBLEM STATEMENT
The wave equation:
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nas the following solution for upward travelling plane

waves [2,3] in the wavenumber frequency domain:
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Thus the wave on the surface (z=0) can be calculated
by forward extrapolation of the wave on the surface
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z=g_  throush the operator W(k K 1% ;W) . Fquation
(2) h8s the following formulatioR in tBe sracetime do-—
main:
P (lel z=0,t) = p(XIYIZr.)It) *w (XIYI ZOt) (4)

Usually the reflector points have a geometrical dis-
tribution which can be very well described by the dis-
tribution of the wave pressure at zero traveltime
p{x,v,2,t=0) (0<z= maximum depth). These waves
p(x,v,2,t=0) propagate to the surface and the propa-
gation is described bv a corresponding operator
h(x,v,z,t). Thus the data recorded on the surface have
the fiorm:

p(XIYIOIt)T[ P(XIYIZIt=O) *h(lerZrt) dz + n(XIYIt) (5}
max

vhere n(x,y,t) is the recorded noise. The integration
along z takes into account reflections at different
depths. The operator h(x,y,z,t) has the form (3) when.
the velocity ¢ is constant throughout the earth. This
is not usually the case, since wave velocity varies
with the depth and with the type of the rock. We shall
assume here only a layered medium having propagation
velocity ¢, in the layer i, 1= i=N. In this case the

operator kx,k ,zi,co) has the following form in the
layer i: Y
2 2
—ilg - W 42 52 | @ 2,0
e}@[ 1(zi zi-1) 2 ke ky 2 zkx+ky
i i
W(kx,ky,zi,co)= X (6)

exp[—(ziﬂzi_,l) k tko-— —C—2<k +k—

where <y is the velocity in the layer i and zo=0.

We shall use vector v for the measurements P(x,v,z=0,t)
and vectors X,, 151N, of dimenaeion M, for

pix,y,z=2, ,t)f‘ If the convolution operator h(x,y,z.,t)
is descri by the matrix H, (MxM) and the propagat%on
operator w(x,y,z,,t) by the matrix W, (MxM), the follo-
wing relation holds: .

i
H =[] w. (7
1 =1 3j

Thus (5) becomes:

N
y= ;:]1 HiXi +n (8}

We shall formulate the migration problem in the follo-
wing way:
Given the measurements y find the optimum estimate of
X, and c,
N

Estimation theory is very rich in methods for solv-
ing problems similar to (8). We shall describe in the
next sections the maximum a posteriori (MAP) estimation
[6], which has already been sucessfully used in such
areas as image restoration [7] and image reconstruction
from projections (8] .

IIT. MAXIMUM APOSTERIORT (MAP) ESTIMATION

The MAP estimation [6] maximizes the logarithm of the
aposteriori pdf p(X,,...,XuCy,. .. Cgly). It is known
from basic probability theory that:

P(XyreerXyiCyrnscyly)=

p(YIX I"I><Nlc1l°’lcN) p(X1,..’}<bI,c1'..,cN)
o(y)

xﬁfgp(y P ’XN’C'I P ,cN) is the joint pdf of Xi’ci

We can assume that X.,.. ,XN,c1 1+ ,Cy AXe statistical-
ly independent of each g)ther This is a reasonable
assunption for CqreerCys since there is little, if any,
relation between' the “velocities in differnt rock la-
vers. Such an assumption does not take into account
that velocity generally increases with the depth
C,£C,.. £ C.. At the same time it does not exclude
such & possiblility. The assumption of the statistical
independence of X1 P ,XN is justified for horizontal

Or almost horizontal reflector horizons.
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Based on the assunption of the statistical independence
(9) becomes:

P(X1 re- IXNIC1 ree /CNIY)= N
P(Y!X1 ree IXNIC1 re ‘ICN) ]_Ilp(xi)p(ci)
i=

The signals X, i=1,N are assumed toO have Gaussian pdf
with Xi apriofi means and R

.. covariance mafrixe
51

1 1. =T -
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where M is the dimension of vector Xi' The velocities
c; i=1,N are also assumed to nave Gaussian pdf with

= oo 2 .
Ci apriori means and Oc variances.

(c, 2. Y
1 iV
plc,) = exp§ - ———5— (12)
i 2no 2
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By combining (10),(11),(12) and by dropping some con-
stant terms we find that the function to be maximized

is:
L(X ,..,XN,C,I,..,CN) =4n p(X,l,..,XN,c,l,..,cN) =

1.3 WRE B
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Taking the derivatives of I, with respest to X, ecual
to 0 we find: -

N
_ T = o te T2 -
T = By m B R (K K) =0 kAN ()

By equating the derivatives %- k=1,N to zero we
find: “k _
N 9H, N =
gi= - Zg——l—)T Rn1 (y- }_]Hixi) +ck ;k =0 (15)
% =% =1 %,

Thus the MAP estimators of Xk’ck k=1,N satisfy the
following equations:

N
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(16) ,(17) have a recursive form and they can be used
for a recursive calculation of O (Picard iteration,

(9] . when k=1,N is known, (16) Teduces to a system
?f equations: o -

R;;J’H? Ry H R Ey ) KR X,

Eat el a) | | -
Etn g |

HRE % ) Ry

p;(; %, +H”2'" Ry (18)
5 s 5y

When the model consists only of one layer, (18) degene
rates to:
71

-1 T -1 -1 = T -1
= (RX1 + Hy R Hp) (RX1 Xy + Ef Ry y) (19)
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When the apriori mean 21 is zero, (19) becomes:

1 T _~1 -1 .7 _-1
X’I" (RX’I + H,I Rn H1) H1 Rn y (20)

This is the classical Wiener filter [6]. It has al-
ready been proposed in [11] to be used for noise su-
prression in migration. .

The solution of the system (18) is usually very tedi-
ous because the dimensions of the matrices and the
vectors are very large in rractical cases. Thus we
must find other methods for the maximization of (13).
Such a method is the conventional steepest descent
algoritim [9]. Its basic iteration at the step (p)
is the following:

(o)

3L
1. Calculate VXkL(p) ,W k=1,N.
(o)
2. If |V>S(L(p)]<e, I%Lc;‘ <€ stop.

(Where € is a small positive number).

(P
3. optimize L), x{P) cPa 2L °,..,cI§P> o1,
P 9% P 3¢y

with respect to the scalar ap.

(p)
1 3 .
4. ci(L )=ci(p)—ap%i“ o @
_— (p) (©) (p) . P
5. O - L s
Optimize L(X, bva1L reer pr Les™r hog)
with respect to the scalar bp‘
1
6. xip‘ )=xip)~bvaiL(P). i=1,N (22)

The partial derivatives are given by (14),(15).

The variables X., c; i=1,N are updated simulaneously

in each step.

Another apnroach is to update only ¢y i=1,N until

5P

Mac,
N P

update X, i=1,N until |vy L P/ 4=1,N are less than

the threshold. We shall uSe the second approach in
our simulations.

IV. SIMULATION EXAMPLE

The estimation method described in the previous
section will be illustrated by a simulation the phy-~
sical experiment of Figure 1. A subsurface explosion
is made and the downgoing wave is diffracted by two
diffractor points located in 80m and 150m depth res-
pectively. The diffractors have equal strength as it
is shown in Figure 2. The diffracted wave is recorded
by the geovhones placed on the surface of the earth.
The simulated data corrupted by white additive Gau-
sian noise are shown in Figure 3. The two hyperbolas
are easily recognized. The wavelet is supposed to be
a delta function. The hyperbolas though are smoother
since they have been created by using a bandlimited
operator [2]. The experiment is described by the fo~
llowing equations;

Y=H) X +Hy ¥y @3)

The form of H,,H, is given by (6), (7) for z,=80m,
z, = 150m. The velocities c,,c, are equal to 2400m/s
and 3000m/s respectively. aim is to estimate the
reflector strengths Xy at the depths 24,2, Tes-
pectively and the con:ectz: velocities Cq¢Co- aur ini-
tial guess on these velocities is 1500m/s”and 2400n/s
respectively. This guess is far away from the actual
velocities. The only apriori information available
for the velocities is that their apriori means are
2500n/s and 3000m/s respectively.

Having only this limited information available we
shall try to estimate X1’ + C1:Cy in the presence
of white Gaussian noise, anc71 to compare it to the

results of the conyentional techniques. The results

| i=1,N are less than the threshold e and they

-a_ )

of the conventional migration-imaging algorithm emplo-
ving the correct velocities (usually unknown) are shown
in Figure 4. Extraneous reflectors are pre-—
sent. The flector amplitudes axe not equal
to each other. The MAP estimation of

Xy 1X5Cq1Cy has been performed by using the iterative

a]. or'%hm described in section IV. First only the ve-
locities ¢,,c. have been estimated iteratively. The
good estimate§ 2359m/s and 3017m/s have been cbtained
in only 12 iterations. The reflector strengths X ,X2
have been estimated in 9 iterations on the basis of

the velocity estimates. The results are shown in Fi-
gure 5. They are must better than the results of the
convevtional technicue. They are also very close to

the ideal results of Figure 2. Note that the two esti-
mated reflector strengths are equal, as they should
he. The various convolutions of the form Hixi ’

oH,

—Lx, , HT X, i=1,2 used in the MAP estimation have
ack i” 71T

been implemented by using two-dimensional Fast Fou-
rier Transform algorithms [1,2].

V. CONCLUSIONS

The Bayesian estimation has been proposed to be
used in seismic migration. The algorithms derived
cambine estimation theory and the deterministic appro-
ach based on wave theory. Their results are proven
to be much better than the results of the conventio-
nal iterative migration-imaging algoritim. The supe-
riority of our approach lies in the fast that it esti-
mates the velocity distribution of the earth and that
it takes into account all the appriori information
available. The proposed algorithms aze iterative ones.
This fact gives an additional flexibility in cur me-
thod.
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