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I. INTRODUCTION

Interception of communications is attempted for
a variety of reasons including reconnaissance,
surveillance, and other intelligence gathering
activities, as well as position fixing,
identification, and communications jamming. For
example, interception plays an important role in
arms control verification and in prevention of
illegal operations such as drug smuggiing.
Typically, the interceptor has knowledge of no more
than the communicator's frequency band, modulation
format, and modulation characteristics such as
bandwidth and hop rate or chip rate. It is commonly
held that the most appropriate approaches to the
detection task for signal interception must be based
on radiometry, that is, measurement of received
energy in selected time and frequency intervals (cf.
[11-[51). It dis also commonly recognized that such
radiometric methods can be highly susceptible to
unknown and changing noise levels and interference
activity. There have been many proposals for
methods of countering such complications, including
various approaches to adjusting or adapting
threshold Tevels, and adaptive filtering,
cancelling, and directional nulling of interfering
signals. But these problems remain as the most
serious impediment to signal detection and other
signal interception tasks (cf. [4]-[6]).

The radiometric approach to detection is
based on the use of stationary random processes as
models for the signals to be intercepted. However,
for the purposes of signal interception, the signal
of interest is more appropriately modeled as a
cyclostationary random process, that is, a random
process whose probabilistic or statistical
parameters vary periodically with time [7]. Since
the message contained in the modulated signal is
unknown, it is usually modeled as a stationary
random process (discrete-time or continuous-time).
This stationarity coupled with the periodicity of
sine wave carriers, pulse trains, repeating
spreading codes, etc. results in a cyclostationary
model for the signal. However, these
cyclostationary signals typically do not exhibit

In this paper, a unifying approach to the
design and analysis of quadratic detectors for
signal interception is presented. The methods of
detection that are incorporated in this unification
include radiometry, delay-and-multiply chip-rate-
feature detection, filter-and-square carrier-feature
detection, dual-channel-correlation detection,
ambiguity-plane feature detection, Wigner-Ville
time-frequency-plane feature detection, spectral-
correlation-plane feature detection, 1iklihood-ratio
detection for weak signals, maximum-deflection
detection, and optimum spectral-line-regeneration
detection. The unification reveals the fundamental
role that spectral correlation and spectral-line-
regeneration play in the signal interception
problem, It also suggests the spectral-correlation
plane approach as a general approach to interception
that offers great flexibility as well as inherent
tolerance to one of the most challenging problems in
interception, namely, accomodating unknown and
changing noise level and interference activity.

spectral lines, because the spectral lines of the
unmodulated carriers and/or pulse trains are spread
out over relatively broad bands by the stationary
random modulation.

The purpose of this paper is to use the
unifying framework of the spectral correlation
theory of cyclostationary signals to present a broad
treatment of weak random signal detection that
clearly reveals the relationships among the variety
of detectors that have been proposed, or are in the
development stage, or are in use, and to present
several arguments with supporting results that favor
cyclic-feature detection over energy detection for
accommodating the problems associated with unknown
and changing noise levels and interference activity.
Cyclic features result from the characteristic
property of cyclostationarity called regenerative

eriodicity, which means that spectral Tines can be
regenerated from the signal with the use of
appropriate quadratic transformations [8].

II. CYCLOSTATIONARITY AND SPECTRAL CORRELATION

If there is more than one source of
regenerative periodicity in a signal and the periods
are not all commensurate, then the process is called
almost cyclostationary since its parameters are
almost periodic functions of time (that is, sums of
periodic functions with incommensurate periods)
[71,[8]. For example, the autccorrelation function

Rx(t+T/2,t-T/2) = E{x(t+1/2)x{t-1/2)} (1)

for the signal x(t), by virtue of the (almost)
cyclostationarity of x(t), will be a (almost)
periodic function of the variable t, and will
therefore admit the Fourier series representation

R (t+7/2,t-1/2) = ] Ri(r)e"z"“t , (2)
o

where the sum is over integer multiples of
fundamental frequencies (reciprocals of periods),
such as carrier frequency, baud rate, chip rate, hop
rate, and their sums and differences, The Fourier
coefficients RY(1), which depend on the lag
parameter ¢, are given by the formula



70 ONZIEME COLLOQUE GRETSI - NICE DU 1er AU 5 JUIN 1987 L\/

Z/2
R¥(1) = lim —-f [t+7/2,8-1/2)e
x Iso = 22/2

(If there is only one period, say T, then Z can be
chosen equal to T, and the Timit in (3) can be
omitted.) If x(t) is a cycloergodic process [7]
(which it always will be if an appropriate model is
used), then after substitution of (1) into (3), the
expectation operator can be omitted to obtain

-12natdt. (3)

~-i2mat

, 22
R)"(‘(T) = Tim 5 [ x(t+1/2)x(t-1/2)e dts (4)
L+ -1/2

(When (4) is used in place of (3), the limit Z+ew
cannot be om1tted when there is only one period,)
The function R§(t) is called the cyclic
autocorrelation function, For =0, it reduces to
fﬁefconventhnal autocorrelation function

RQ(r). Whereas RQ(<) can be seen from (4) to be
the dc component of the tag-product waveform
x(t+7/2)x(t-7/2) for each value of 1, RY(1)

can be seen to be the ac component corresponding to
the sine wave frequency a.

The Fourier transform

sie) - f: RY(<)e™ 27fTg, (5)

is called the cyclic spectral density function. For
a=0 it reduces to the conventional power spectral
density function, that is, the spectral density of
time-averaged power. However, for «#0, it can be ~
shown [7]-[97 that Si(f) is the density of spectral
correlation, that is| the density of correlation
between spectral components at the frequencies f+o/2
and f-o/2. Specifically, it is shown in [7]-[8]
that /2
S3(f) = lim Tim —Zf Xp(t,F+a/2)X3(t, F-a/2)dt

Troo Z+oo (6)
where Xy(t,f) is the comp]ex envelope of the

narrowband spectral component with center frequency
f and bandwidth on the order of 1/T,

Ct+T/2 .
Xp(t,f) = i x(u)e~12nfug, | (7)

Thus, S§(f) is also called the spectral correlation
function, and it follows from the preceding
discussion that spectral correlation is a
characteristic property of cyclostationarity of the
autocorrelation,

The most common approach to modeling signals
for interception studies (cf. [4],[5]) is to ignore
cyclostationarity by either (i), introducing a
random phase variable o uniformly distributed over
one period of the cyclostationarity (or a sum of
such phases, one for each period of an almost
cyclostationary process) so that x(t+e) becomes
stationary [7], [10]--that is only the @=Q term in
(2) is then non-zero--or (ii), using the time-
average approach based on (4), and simply ignoring
the @0 averages. This approach is appropriate if
there is no desire to exploit cyclostationarity, and
it leads to the popular conclusion that the
radiometer is essentially the optimum detector (cf.
[7].) Therefore the adoption in this paper of the
cyclostationary model marks the point of departure
of this work from many previous studies of signal
interception. Nevertheless, since the stationary
model is a special case of the cyclostationary
model, the results derived in this paper include the
more conventional results as special cases.

I1I. DETECTION BY SPECTRAL-LINE REGENERATION

Perhaps the most straightforward interpretation
of most cyclic-feature detectors is that they use a
nonlinearity to regenerate a spectral line from the
noisy modulated signal, and then use a bandpass
filter, DFT, or other methods of spectral analysis
to detect the presence of the regenerated spectral
Tine which is masked by continuous spectral

components due to noise, interference, and the
signal of interest itself. Since the signal-to-
noise ratio (SNR) is often very low in an
interception environment, the lowest order
nonlinearity is usually chosen since an SNR of less
than 0dB becomes increasingly lower as the order of
the nonlinearity used is increased. Thus, most
feature detectors use quadratic nonlinearities. (An

.exception is carrier regeneration for balanced QAM

signals, such as QPSK, since these require higher
order nonlinearities for spectral-line
regeneration,) Hence, most feature detectors are
quadratic time-invariant systems which can always be
represented by

ya(t) = fw jwka(u,v)x(t-u)x(t-v)dudv s (8)

where o represents the frequency of the spectral
line to be regenerated from x(t). For example, for
the dual-channel-correlation feature detector, we
have

) = [ hy(umwhy(v-u)g (w)du (9)

where hi(t) and hp(t) are the impulse-response
functions of bandpass filters with center
frequencies fy and fp, and g,(t) is the impulse-
response function of a bandpass filter with center
frequency o = fp-f1. Similarly, for the delay-and-
multiply chip-rate-feature detector, we have (9)
with hp{t) = hy(t-To), where the delay T4 is
typically chosen to be half the chip interval, hi{t)
is the impulse-response function of a band- selection
fiiter, and o is the chip rate. Also, for the
filter-squarer carrier-feature detector, we have (9)
with ho(t) = hi(t), and o is the doubled carrier
frequency.

The approach in the past has been to choose the
particular detector structure, and then to optimize
its parameters, such as the delay Ty and prefilter
bandwidths (cf, [11]). An alternative approach that
puts these ad hoc detectors into better perspective
is to analytically solve for the kernel k,(u,v) in
the general representation (8) that regenerates the
strongest possible spectral line at some appropriate
frequency o for a specific signal type, This same
objective applies not only to the design of feature
detectors for interception but also to the design of
synchronizers that operate on the basis of using a
phase-Tock loop to Tock on to the phase of a
regenerated carrier or clock signal.

It has recently been shown [8], [12] that the
particular kernel that maximizes the SNR of the
regenerated spectral line for a cyclostationary
signal s(t) in additive stationary Gaussian noise
and interference n(t), x(t) = s(t) + n{t), is
specified by_

ku(u,v) = _£ _£ Ka(f,v)e12“(fu"“v)dudv,
lul,lv] < T/2 , {10)
where T is the collect time of the detector and
Sg(f-a/2)*

K (f,v) = fev-a), a#0. 11
0‘( v) EEEFYEEZF:;; §(f=v-a) # (11)

(In the derivation of (10)-(11), it is assumed that
T is large enough that a spectral window of width

1/T will resolve S{f) and Sg(f).) Thus, the

optimum spectral ]1ne regenerator is completely
specified by the spectral correlation function for
the signal and the power spectral density for the
noise plus interference. Furthermore, the maximized
value of SNR is given by

a 2
|s2(f) |

0 i) df, az0, (12)
® Sn(f+“/2)Sn(f-a/2)

o T
SNRiax = 2 {

where SNR®is defined to be the ratio of the power in
the regenerated spectral line to the power in the
band of width 1/T centered at frequency q, due to
the noise plus interference. Substitution of (11)
into (10) and the result into (8) yields
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y(t) = SN S3 (1.0af(e 2, (13)

-co

where Sg (t,f) is the cyclic periodogram for z(t),
T

a Al *

SZT(t,f) & 5 (¢, Fre/2) 2 (L, f-0/2), (14)

and Z.(t,f) is the frequency-weighted finite-time
Fourilr transform of x{(t) (cf. (7))

Zp(t,f) = Xp(t,F)/S9(f). (15)

In conclusion, if the noise is white (Sg = Ng}»
then the maximum-SNR spectral-line-regeneration
detector measures the cyclic periodogram of the
received data x(t) and correlates it (over f) with
the ideal cyclic spectral density (spectral
correlation) function for the signal to be detected

-s(t). On the other hand if there is strong
narrowband interference as well as white noise, then
the measurement X7(t,f) is first notched by division
by Sg(f) to obtain (15). Then the cyclic
periodogram is formed and it is correlated with the
ideal cyclic spectral densitﬁ function for the
signal. For weak signals, Ss(f) << Sg(f), we have

Sg(f) = Sg(f) and Sg(f) can be measured from the
received data x(t).

For specific signal types, the general form of
the optimum detector can often be reduced to more
familiar forms. For example, it is shown in [12]
that for PSK type signals (13) reduces to a
narrowband-rejection filter for narrowband
interference removal, followed by a matched filter,
followed by a squarer and a bandpass filter. This
reveals that the optimum prefilter for the filter-
squarer detector is a matched filter, and that
although the optimum delay for the delay-and-
multiply detector with no prefilter is half the chip
interval, the optimum pre-filter is a matched
filter and, when this is used, the optimum delay is
zero,

IV. DETECTION BY CYCLIC SPECTRAL ANALYSIS

Although such familiar forms as a matched-
filter-squarer are intuitively appealing, they are
not necessarily as flexible as the general form
{13). For example, if the particular signal type of
interest is not known sufficiently well to obtain a
good approximation to the spectral correlation
function S*(f) used in (13) as a weighting function
before intggration over f, then it can be replaced
with a simple window such as a rectangle, whose
width Af is chosen to be as large as possible
without exceeding the widths of features expected
to be present in S*(f), and whose center f is a
variable parameter, The resultant detection
statistic is f4aF/2

1
y (t,f) = S% (t,v)dv . 16
o af g-Af/Z 2y viav (16)

This frequency-smoothed cyclic periodogram is a
standard estimate of the frequency-weighted ideal
cyclic spectral density function S%*(f). In fact, it
can be shown [8] that z

1 f+af/2 Sﬂv)

il

1im yu(t,f) = dv. (17)

Tow aF/2 SQ(v+a/2) SU v-a/2)
Moreover, it can be shown that the variance of
Yo(t,f) is inversely proportional to Taf [8].
Furthermore, if n(t) exhibits no cyclostationarity
with cycle frequency o (or no spectral correlation
with frequency separation o), then Ss(f) =0

and therefore S3(f) = S¥(f). In conclusion, if
Yo(t.f) were measured and graphed as a time-variant
surface above the (f,q) plane, then the presence of
recognizable spectral correlation features could be
used to detect signals of interest and also to
classify them according to modulation type. This
approach to detection and classification based on

cyclic spectral analysis was first proposed in [13],
A variety of methods for cyclic spectral analysis
are described in [8] and [14]. The unique spectral
correlation {cyclic spectrum) surfaces for a wide
variety of modulation types are calculated and
graphed in [7], [81, [15], [16].

V. AMBIGUITY-PLANE AND WIGNER-VILLE-TIME-FREQUENCY-
PLANE METHODS OF DETECTION

Having revealed the central role played by
spectral correlation and cyclic spectral analysis in
the spectral-line-regeneration approach to
detection, it is a simple matter to interpret the
ambiguity-plane approach and the Wigner-Ville time-
frequency-plane approach in terms of optimum cyclic-
feature detection. Like the three conventional
feature detectors considered in Section III, these
two approaches are also ad hoc, They have not been
derived from any objective design criterion.
Nevertheless, when properly modified, they can be
made equivalent to the optimum spectral-line-
regeneration detector. This follows directly from
the facts that the ambiguity function can be
obtained by inverse Fourier transformation of the
cyclic periodogram Sg (t,f) in the f variable and

the Wigner-Ville function can be obtained by inverse
Fourier transformation of S§_(t,f) in the q

variable. (This is explained in [8], [9]). In both
cases t is the time-index for evolution of these
two-dimensional surfaces.

It is emphasized that the smoothing operation
used in the spectral correlation plane (or cyclic-
spectral-analysis) method derived from the optimum
spectral-line-regeneration detector in Section IV is
important since the variance of the measured
spectral correlation function is inversely
proportional to the product of the collect time T
and the smoothing window width af. (In fact, the
SNR performance of the cyclic-spectral-analysis
detector is proportional to Taf provided that af is
not too large.) Thus, methods based directly on the
Wigner-Ville function without smoothing in f, or on
the ambiguity function without weighted integration
in ¢, would not be expected to perform comparably.
Furthermore, the characteristic of the Wigner-Ville
function of adding contributions from all values of
« is a probable source of poor performance for two
reasons: (i), the signal of interest makes its
primary contributions to the detection surface at
only values of o equal to its cycle frequencies, and
(ii), even the contributions at the cycle
frequencies of the signal should not in general be
added directly without proper phase compensation.
This is explained in the next section.

VI. LIKELIHOOD-RATIQ DETECTION

To gain further insight into the potential and
the limitations of the optimum spectral-Tine-
regeneration detector and its cyclic-spectral-
analysis adaptation, we describe the relationship
between the spectral-line-regeneration detector and
the likelihood-ratio detector,

It is explained in [8] and [12] that the
statistic for 1ikelihood-ratio detection (for each
time interval [t-T/2, t+T/2]) of a weak zero-mean
(almost) cyclostationary signal in additive
stationary Gaussian noise and/or interference is
closely approximated by

o *
yit) =1 [ S§(f) 87 (t,f)df, (18)
a -~ T
which is simply the sum over all cycle frequencies
of the complex envelopes of the maximum-SNR
spectral-line detection statistics (13). Thus, this
optimum multi-cycle detector measures the cyclic
periodograms of the received corrupted signal x(t)
for all cycle frequencies o contained in the signal
to be detected s{t), correlates these (over f) with
stored replicas of the ideal cyclic spectral

7]11;;;//
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densities of s(t), and then adds up these
correlations. (If the signal were modeled as
stationary, then only the o=0 term would remain and
this would yield the optimum radiometer, cf. [7]).
Unfortunately, even if the modulation type and its
parameter values (e.g., carrier frequency and chip
rate for a BPSK signal) are known, the optimum
multi-cycle detector (18) cannot be implemented
without knowledge of the phase of the signal
because the quantities Ss(f) depend on this phase.
Incorrect phases of the individual terms in (18) can
result in destructive interference rather than
constructive interference when the sum dgver o is
performed.

Although (18) might not be practical for
implementation, it lends further support to the
cyclic spectral analysis approach to detection
since this approach enables the user or an
automated algorithm to exploit more than one cycle
frequency of the signal of interest., This can be
beneficial not only for detection, but also for
identification of signal-modulation type as well as
for s1gna1 ana]ys1s (parameter estimation). 1In
fact, it is shown in [12] that maximization of (18),
with respect to signal parameters on which Ss(f)
depends, yields their weak-signal maximum-1ikelihood
estimates.

IT. MAXIMUM-DEFLECTION DETECTION

An alternative approach to arriving at the
multi-cycle detector (18) as a detector with
optimality properties is based on a performance
measure called deflection., Specifically, the
deflection is a measure of output SNR that is
particularly appropriate for weak-signal detection.
For a detection statistic y(t), the deflection is
defined by
d(t) A |[E{y(t)|s(t)present} - E{y(t)[s(t)absent}]

(var{y(t)|s(t)absent}) 1/2 (19)
It is shown in [7] that the quadratic transformation
that maximizes deflection is identical to the
optimum multi-cycle detector (18). It is also shown
in [7] that the value of the maximized deflection is
given to a close approximation by the sum of
maximized SNRs,

d?(t)

Y

) SRS, (20)

o s
where SNRmax is g1ven by (12).

max

VIIT. A FUNDAMENTAL DISTINCTION BETWEEN
RADIOMETERS AND CYCLE DETECTORS

The radiometer output contains a spectral line
at o = 0 regardless of whether or not the signal is
present, but the cycle detector (13) contains a
spectral line at o # 0 only if the signal is
present. Thus, the radiometer must distinguish
between the strength of the spectral line at « = 0
due to signal plus noise and/or interference, and
the spectral line at o = 0 due only to noise and/or
interference, whereas the cycle detector need only
distinguish between the presence and absence of a
spectral line at o # 0. This follows directly from
the formula [8], [12]

P = _Z K(F+a/2,-a/2) SE()df (21)

for the spectral-line power of any quadratic
detector (K is the double Fourier transform of the
kernel k, cf. (8) and (10)) and the fact that

S¢(f), « # 0, signal present

sy 4 0 o

s(f) + S(f), « = 0, signal present
Si(f) = (22)

0 a # 0, signal absent

$O(r), o = 0, signal absent,

n

where it is assumed that the noise plus interference
n(t) does not exhibit cyclostationarity with cycle
frequency a, Sz(f) = 0. This greatly complicates
the problem of 'setting the threshold level to be
used with the radiometer and renders the radiometric
approach to detection inherently more susceptibie
than the cycle detector to unknown and/or changing
noise and interference, especially for weak signals.
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