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RESUME

La méthode de différence de matrices de covariance
est une addition récente aux méthods de détection
basées sur 1'espace des signaux. Elle offre
1'avantage de nes pas présupposer un bruit blanc
ou de covariance connue. on démontre que la
matrice différence a autant de valeurs propres
positives que négatives. Ce résultat suggere
plusieurs modfications d'un test classique du
maximum de vraisemblance pour déterminer la
dimension de l'espace des signaux. Une méthode
rectificative wutilisant uniquement le niveau du
bruit permet d'améliorer la sensibilité de ces
tests.

1. INTRODUCTION

The covariance~difference method [1,2] is an
array-processing technigue that permits use of the
recently popularized signal subspace methods, such
as MUSIC {3], without the need for the assumption
that the noise is white or that it has a known
covariance matrix. Instead, the method requires
only that the noise be isotropic in the sense that

if the array is rotated or shifted between two
sets of measurements the noise covariance matrix
should be the same in the two measurements. The
requirement for isotropy of the background noise
is much less stringent than the requirement that
the noise covariance structure should be known,
and it is a requirement that is often satisfied in
practice. To wuse the method, the signals
obtained from the array elements are stored for a
predetermined observation period and are then used
to form an estimate of the received~signal cova-
riance matrix. The array is then rotated or othe-
rwise moved, another set of measurements is stored
and is wused to form a second covariance-matrix
estimate. The covariance matrices obtained from
the two measurements are then subtracted to form
the covariance-matrix difference. The general
form of the difference is:

* *
K) - Ky =Q) - Q + AjS1a) ~ ASohy
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where Q. and Q, are the estimated noise covariance
matrice% obtagned from the two measurements, A
and A, are the steering-vector matrices, 8, and S
are tge estimateg signal covariance matricés, ana
the superscript refers to Hermite transposition.
Because the noise is assumed to be isotropic, the
maetrices @, and Q., are the estimates of the same
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ABSTRACT

The covariance difference method is a recent addi-
tion to the various signal subspace methods for
signal detection that eliminates the requirement
of a white or known noise covariance matrix. We
show that the number of positive eigenvalues is
the same as the number of negative eigenvalues,
and this suggests several simple modifications of
a well-known likelihood-ratio test for determining
the dimension of the signal space. The sensitivi-
ty of these tests can be increased further by a
rectification procedure utilizing only the noise
level.

noise covariance m&trix. Hence the true eigenva-
lues of Ql - Q, age zero. _Also for p signals the
rank of A. S Al - Azs Az is no larger than 2p.
It is less t%a% 2p if a%y of the steering vectors
in Al and A, are identical or linearly dependent.
This™ can hgppen if the angle of rotation between
the two sets of measurements coincides with the
angular displacement between the sources.

2. PROPERTIES OF THE EIGENSPECTRUM

Theorem 1 . x
If the matrix AISA - A,SA, is full rank
it has p positive and’p fiegatife gigenvalues.

To prove this let

C=[A, Ay, W]. (2)

where W is chosen so that € is a square, nonsingu-
lar matrix. This can always be done if [Al, A,
has full rank. Also consider the diagonal matr%x

[
D ={| -8 (3)
0

where 0 is a zero matrix of dimension M-2p. Then

* * *

e = AlSAl - AZSA2 (4)
This is a congruence transformation, and by Sylve-
ster's law of inertia [5] the matrix CDC has the
same number of positive eigenvalues as D, the same
number of negative eigenvalues, and the same num-
ber of zero eigenvalues. Thus if there are no
steering-vector cancellations the eigenvalue stru-

cture of K, - K, consists of p positive eigenva~
lues, M-2p Zero €igenvalues, and p negative eigen—
values. It is easy to give counterexamples to

show that the theorem is not true if there are
cancellations. The multiplicity of the zero eigen-
values can be used as an estimate of p. Because
of the possibility of cancellations this estimate
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is only a lower bound on the number of signal
sources. The probability of cancellations can be
reduced by rotating the array through several
different angles.

3. A LIKELIHOOD-RATIO TEST

The statistical properties of eigenvalues and
eigenvectors of sample covariance matrices have
been examined in the literature [6,7], -but results
are generally restricted to eigenvalues of positi-
ve~-definite covariance matrices. The likelihood-
ratio test for the hypothesis H. that the eigenva-
lues AC, Ac+l' e Ac+d are egual is

L = -nd log (g/a) (5)

where n is the number of independent observations
(snapshots),

c+d 1/d
g = | A, is the geometric mean
i=c
and
c+d
a =

(1/b) 2: Ai is the arithmetic mean of
i=¢c

the eigenvalue estimates. When H. is true L is
approximately x2 with v = 1/2 (8-1)(d+2).

Since we are dealing with a nonpositive-
definite matrix, and since the eigenvalues of
interest are, 1in fact, zero, this test is clearly
not applicable. However the fact that for full
rank [A., A,] the number of positive and negative
eigenvaiues Es the same suggests applying the test
to only the positive half of the eigenspectrum.,
- Alternatively one can apply the test to the abso-
lute values of the negative half of the eigenspec-
trum. Since the eigenspectrum is generally not
symmetric the positive half might vyield better
sensitivity than the negative half, or vice versa.
Thus the further possibility suggests itself of
using the absolute value of all of the eigenvalues
in the test to average the risk, so to speak.
Prasad et al. [8] have recently demonstrated exact
symmetry of the eigenspectrum for linear arrays
with uniform element spacing and where the angle
of rotation between measurements is 180°. In this
case there is clearly no need to consider anything
beyond the positive half of the eigenspectrum.

The test 1is recursive, starting with the
hypothesis H, that there are no sources; 1i.e.
that all of tge eigenvalues are zero. This hypot-
hesis is accepted if the test statistic L is below
a preset threshold. Otherwise HO is rejected, the
largest eigenvalue is removed,  and the test is
repeated on the reduced set of eigenvalues. The
test terminates if either H, is accepted at some
stage (normal exit), or gf there are no more
eigenvalues to be tested. If the exit is normal
the estimated number of sources is the number of
iterations prior to the final acceptance of H..
This is a modification of the Bartlett—Lawlgy
procedure [9,10]. Its main disadvantage is that
it is difficult to set the threshold for a desired
test size.

Wax [11] has proposed two methods in which
the test statistic is combined with a measure of
the degrees of freedom: '

AIC: L + p(2M - p) (6)
MDL: L + (1/2 log n)p(2M - p) (7)

These are calculated recursively for p = 0,1,2,...
as before, and the value of p for which the expre-
ssion (6) or (7) reaches a minimum is taken as the
.estimated value. Wax has shown that expression
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relatively small number of "snapshots" that we
have used in simulations of the procedure we have
found that expression (6) works better,

4. RECTIFICATION

In Fig. 1 we show a typical set of eigenva-
lues obtained in simulations. The eigenvalues are
arranged in ascending order. One set corresponds
to no signal, (SNR = 0). and the other set
corresponds to a single signal with SNR = 1 pre-
sent, The shape of the spectrum of ordered eigen-
values reflects the probability density of these
eigenvalues.

If one assumes the eigenvalues under the
noise-only hypothesis to be independently and
identically distributed random variables with
probability distribution F(x) and probability
density f(x) then it can be shown [12] that the
pdf of the ordered eigenvalues is given by:

£00 = nt___(Feo ¥ HI-Fe0 1" ) (8)

&1 (KT

We have calculated the expected value Ex, of the
ordered eigenvalues under the assumption %hat they
are i.i.d. normal with zero mean and variance c“.
A typical result of such a calculation is shown in
Fig. 2 together with the expected eigenvalues of
the =zero-signal covariance matrix obtained by
computer simulation. We see that the two ordered
sets are very similar.

Subtracting the X, from the A, results in a
set of numbers having™a much smdller standard
deviation than the original set of eigenvalue
estimates. Typical reductions in standard devia-
tion of greater than a factor of five are easily
achieved. The sensitivity of the likelihood-ratio
test using these "rectified" eigenvalues is simi-

larly increased.

Rectification clearly requires knowledge of
the noise level. , It therefore compromises to
some extent the feature of covariance-matrix sub-
traction of requiring no knowledge of the noise
statistics. An estimate of the noise level can,
however, generally be obtained. A possible met-
hod is to use a beamformer (which is just a parti-
cular way of processing the observations) and to
use the smallest power level from the beamformer
as an estimate of the noise level.

We have applied the likelihood-ratio test of
Eq.(6)--i.e. the A.I.C. form——to simulated data.
Typical results are presented in Figure 3. The
plots shown in this figure are of the test fun-
ction L + p(2M-p) for M = 11, p = 2, and signal-
to-noise ratio of .7. In Fig. 3(a) we show the
test function using only the positive half of the
eigenspectrum. The companion result for the nega-
tive half eigenspectrum (not shown) is similar,
but in the particular case illustrated shows no
minimum at the correct value of p. Fig. 3(b)
shows the test function applied to the absolute
values of the eigenvalues. In both figures the
solid line shows the test function applied to the
estimated eigenspectrum directly; the dashed line
shows the effect of first subtracting the expected
mean of the ordered eigenvalues from Eq. (8). The

-figure shows the distinct performance improvement

achieved by subtraction of the mean. Also it
indicates that a test based on the absolute values
of the entire eigenspectrum is preferable to one
using only half of the eigenspectrum. This result
has generally been corroborated by other simula-
tion results.

" (7) is asymptotically unbiased; however for the
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Figure 1. Typical Eigenspectra of Kl - K2<
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Figure 2 Sequence of Ordered Eigenvalues; (a)
from Eq. (8) (solid); (b) from simulations
(dashed) .
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Figure 3. Typical simulation results: The test
function L - p(2M - p). M=l1l, p=2, SNR = .7.
(a) positive half of the eigenspectrum; (b) abso-
lute value of the eigenspectrum; solid 1lines:
without subtracting expected values; dashed
line: with subtraction of the expected values.
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