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RESUIE

Le propriétés de convergence d'un algorithme du
gradient souple (VLMS) pour un critére de la valeur
absolue de l'erreursont analyseés. VIMS vise a mini-
miser une fonction de l'erreur. Il calcule aussi un
estimé du vrai gradient et, par conséquent, est plus
performant que l'algorithme du gradient usuel qui
minimise la valeur absolue de l'erreur (CIMS). La
supériorité de 1'algorithme du gradient souple (VLMS)
sur l'algorithme usuel (CLMS) pour la prédiction est
illustree par les mesures des gains de prédiction
obtenus pour trois séquences de parole différentes.

I. INTRODUCTION

Adaptive filters are exploited in numerous applica-
tions, e.g. noise cancellation, linear prediction and
echo cancellation in communication systems. The most
familiar type for the adaptation of the coefficients
is the least-mean-square (LMS) algorithm [1,2] that
often applied to nonstationary signals. The filter
(FIR type) output for a given input sample x, in a
prediction mode is given by, .

N

Ya .x, . (L
k=1 k  i-k

The number N of coefficients a may be selected
according to the value of the mean~square prediction
error, i.e. <(x,-y.()*>, where <(.)> means time

average of (.). IMS algorithm when minimizing the
mean-square prediction error adjusts the value of the
kth coefficient ak at the (i+l)th instant according to

h.e (2)

a, =a, .+ Lo X,

i+l,k i,k i i-k
where h controls the predictor's rate of convergence
and ei=xi—yi is the prediction erxror at the ith

instant. When the absolute error, instead of mean-
square error, is minimized, Equation 2 becomes,

a, .+h:sgn(ei).x (3)

qiv1,k T 34,5 ik

where sgn(.) denotes the polarity of (.).
The parameter h is often replaced by P, (x) where P, (x)

is a function of the power in the speeCh signal
computed over a duration of approximately a pitch

period. Pi(x) is expressed by,
§
P (x) = —/— (4)
i i-1
1 2
E X, + B
j=i-1-M 7

The denominator of Pi(x) behaves as an automatic gain

SUMMARY

The convergence properties of a versatile LMS
algorithm (VLMS) for an absolute error criterion are
analysed. VLMS attempts to minimize an error
function and estimates the true gradient. Therefore,
outperforms the usual gradient algorithm that
minimizes absolute error (CLMS). The superiority of
VLMS over CLMS in a prediction mode is illustrated by
»rediction gain performance measures for speech
sentences. Finally, it is shown that for each
coefficient 80% of the time, VLMS equations take the
degression from CLMS algorithm.

control which tends to equalize the adaptation rate of
prediction algorithm to the variation in the mean
square value 02 of the speech sequence {x,} computed
over the immediate past M samples. Thus “when 0y
increases the second term in Equation 2 is reduced and
over-corrections of the a, coefficient avoided,
preventing the occurrencel+l'k of a large prediction
error. The constant B in Equation 4 maintains a finite
value of P, (x) during silence intervals. It should be
mentioned “that when Equation 4 is associated with
Equation 3, x? in Pi(x) is usually replaced by le.

The second algorithm (CIMS) defined by Equation 3 is
simple for hardware implementation and studied by
Cummiskey [3]. Also, in many applications such as
ADPCM codec for speech signals, in the presence of
transmission errors, CIMS is less affected thaq_the
LMS algorithm. This is because the former one uses
the polarity of e, rather than the actual amplitude of
e, as in the LMS lalgorithm. However, both algorithms
defined by Equations 2,3 have their own disadvantages.
For example, the first one has a slow convergence rate
and deteriorates rapidly its performance for a small
change in an adaptation constant h (or § in Equation 4)
The second one has alsoc a slow convergence rate, but
in the prediction context, has less multiplications
and more robust to the variations in § despite the
small degradation in the peak prediction gain. 1In
order to improve the prediction gain for wider range of
§ , we propose versatile-LMS (VIMS) algorithm that is
truely instantaneous [4]. The advantages of VLMS are
two-fold. First, it attempts to minimize an error
function. This function can be dependent on a variety
of criteria such as the modulus of the prediction
error, the square of this exrror, the differential of
the error. Secondly, as the algorithm at a given
instant computes several errors with respect to pre-
selected error function and then picks and chooses the
minimum error, it measures the true gradient and
therefore outperforms the former ones.

In this article, we analyse the convergence properties
of VIMS for an absolute error criterion and further,
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we show that for each coefficient 80% of the time
VLMS ecuations take the degression from the CLMS
algorithm, i.e., see Equation 3. In order to
support our mathematical analysis computer
simulations are carried out for various speech
sentences with the predictor order of 12.

II. CONVERGENCE OF THE CLMS ALGORITHM

In this section the sequentially updated CLMS
algorithm is compared with a modified autocorrelation
algorithm in a prediction mode (MAP). MAP is defined
by considering a sliding-block autocorrelation
predictor (SBAP) whose coefficients are re-calculated
from a block of W_ samples every sampling instant
using the autocorrelation method. Although SBAP
algorithm can not be used in a practical system
because of the amount of side information that must be
transmitted, it does achieve more accurate predictions
than those of ILMS or CLMS, and here it is used as a
bench-mark.

rigure 1 depicts the adaptation logic of CLMS
algorithm.

At the ith §ampling instant, SBAP has a set of co-
efficients AS, and a prediction exror, e, _, while
CLMS in vector form, represented by !

A,+P.X_sgn(e.) (5)
1 1 1

P, (x) is replaced by P, i.e., will be assumed constant
over a small number of sampling intervals. The hat
(~) above the symbol means the symbol is a vector,
viz.

AT = {a, ,a_,a a_]
k ~ tT17%2'T3 TN
AT
Xi = [Xi—l,xi—Z""’xi—N]

where the raised T implies transpose of the vector.
The predicted output from CLMS in vector form is,

I\T/\
= X 6
¥y T A% 2
For SBAP algorithm
e. =x-AR, . (7
i,s i si
Hence n A T
-e, = —(A -A ) X, (8)
1 s i i oA
Now, let Yl be as a dlfference vector, (Ai—AS) and
write Equation 5 as
~ a . _ 9
§i+l A A A +P. x sgn(e l) (9)
or Y. ., = y +P. X .sgn(e ) (10)
i+l or i
then e, = e, -Y, (1L)
i i,s i 1
and substitution of Egquation 11 in Equation 10 yields
~ ~ ~ AT ~
= +P. -y, .X 12
Yiel = Yy Xngn(ei,s Yy i) (12)
The norm of Equation 12 is
~ 2 ~ 2 ~Tr ~T
[y 17 = Ly aper X, osontey v,
~ 2~ 2
X,)>+P <X?{sgn(e.)} >. (13)
i i i

For ei s<§§&i' the coefficients of CLMS are not near

’

optimum, with P<<1, Equation 13 becomes

1A 12 ATs ATz
vy 17 = 01y 1% epy X san(=y %) (14
since z.sgn( z)=|z], Equation l4 is rewritten as
[y 117 =17, -2 % (15)
Finally, it is obvious that 2P|Y X | is always
positive, hence
2 - 2
Ny, 17 <diy 17 (16)
Consequently, CIMS algorithm converges Also the
convergence is slowed to stop when|y X, |+|e |, i.e.
Equation 13-14 becomes S
~ 2
||Yi+111 = [y, 1! (17)
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Figure 2 shows the variation of prediction (dB) as a
function of adaptation parameter § (taken as a power
of 2) for three different speech sentences sampled at
8kHz, bandlimited to 3.4kHz. The value of B in
Equation 4 is 0.5 and M=100, N=12.

III. VLMS ALGORITHM AND ITS PERFORMANCE

In this section, we describe the versatile LMS
algorithm which attempts to minimize an error function
G. This function can be made dependent on a variety
of criteria such as modulus of the prediction error,
the square of this error etc. Thus G is a function of
the prediction error, e,. In VIMS, two values of G
are formed every sampliﬁg instant in the updating of
each predictor coefficients. FPor an N-order predictor,
VLMS calculates 2N values of G every sampling instant.
The values of G used in updating each coefficient at
the ith instant are based on two estimates of the
prediction error. For each coefficient the difference
between the appropriate G values is formed as:-

A =G -G , k=1 ...,N. (18
i-1,k i-1,2k-1 "i-1,2k 1203, ! (18)
Then coefficient adaptation eguaticn at the ith
instant is given by
=q
= a -p WA k
4k T %1,k T8k (19)

The term k_a results in a small modification to the
higher order coefficients then to the lower coeffici-
ents. Experimental results show that by setting a to
a value just less than unity good prediction is
obtained. The operation of VLMS algorithm at ith
instant is illustrated in Figure 3.

The operation of the predictor employing VLMS
algorithm can be explained with the aid of 2nd order
predictor (N=2).

The second-order VLMS predictor at ith sampling

instant forms four predlctlons y , y /Y.
-1,1 -112°7i-1,3

and y -1,4 which are generated froim’ % 1—2 *and xi_3.

These intermediary predictions are

Y. - (a, +5_).%

i-1,1 1-1,17%17 "F5o073 01, 0% 3 (20)
= -s.). + ] 21
Yin,2 = Byip 178 X %3y Xl (21)
Yio1,3 " 31,17 %27 @50 27800 X5 (22)
Yin,a = 31,17 %2735 ,0780) %5 (23)
where s, and s, are system parameters (s.<s.) and
X 2 2%
defined™ by
-1
S = [D-kB] ’ (24)

where D>1 and B<1.
subsequently gquoted.
and subtracted from a

The values of D and B will be
Notice that s, has been added
-1,1 to yield yi—l,l and

while a smaller change of is2 has been made to

Yi-1,2
#i-1,2 -1,3 -1,4"

absolute error criterion in order to compare the

results with previously described CIMS algorithm.
Therefore, we form the moduli of these prediction
errors, viz:

to give y and y We select the

51,3 ixi_l-yi_l’jl, j=1,2,3,4 (25)
and then compute

1,1 7 %-1,17%1,2 (26)

Ai-1,2 7 %-1,3%-1,4 (27)
As Gl 1,1 and Gi—l,2 are the moduli of the prediction
error when a -1,1 is increased and decreased by sl
respectively, it follows that if A'—l l>o then a,_l 1
should be decreased and vice versa. ' Similar™ "’
remarks apply for A and a Consequently,

-1,2 i-1,2°
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the two coefficients in this exanple are updated
according to Equation 19 and predicted sample is
found from Equation 1.

The reason for naming VLMS is now apparent. The
coefficients are sequentially updated every sampling
instant with respect to pre-selected error function
and the predictor estimates the gradient of the
fastest descent of the error function with time.

Figure 4 shows the computer simulation results for the

same speech sentences used in Section II. The system .

parameters o,8,B,D are 0.5, 0.5, 0.1 and 10.0
respectively. As can be seen in Figure 4, the
variation of prediction gain as a function of § shows
more robust behaviour when compared to Figure 2.

The VIMS algorithm defined by Equation 19 converges
as well [4]. BAs before, we assume P, _(x) is
constant over a small number of sampiing intervals
and ignore the optimizing term k™®. Hence

X B TR
where A, is the vector representation of Equation 18.
However, due to space limitations in this paper, we
can not show all the necessary steps, interested
readers may refer to reference [4].

In the next section, we are to demonstrate the
differences between CLMS and VIMS that minimizes the
absolute error, G=<ie,|>. Also this analysis gives
insights for the convérgence behaviour of VLMS
algorithm.

IV. A COMPARATIVE STUDY OF CLMS AND VLMS ALGORITHMS

In many ways, VLMS algorithm behaves like CLMS
algorithm. However, in this section we will show
that about 80% of the time, the prediction coeffici-
ents resulted from VLMS algorithm are different from
those calculated from CLMS algorithm. This procedure
can be described as follows:

Using Equation 26 together with Equations 20-23 and
25, we get (N=2)

SR IXi—l_ai-l,l'Xi—z_ai—l,z'xi—3—
sl'xi~2|_ixi—l_ai—l'xi~2_ai—l,2'
. g 5S¢l (28)
and since
- X, (29)

®io1 T Fi-17%e1,17%i-27%-1,27 %3

Equation 28 is rewritten as

Biy,n = leggmsyoxgpl-ley yrsy %y 5130)
Similarly, i

By 1,p = legymsyxy gl=ley y+s,ox, 41D
Letting "w" be ei—l and "v" be sl.xi__2 or SZ'Xi—B'
Equation 30 is rewritten as

A = |w-v|-|wrv| (32)

i-1,1

Equation 32 can be analysed with the aid of Figure 5.
That is,

-2v (33)

In REGION I: fw-v|-|wiv]| =

In REGION II: |w-v|-|wtv| = -2w (34)
In REGION III: |w-v|-|wiv| = 2v (35)
In REGION IV: |w-v|-|wtv| = 2w (36)

Hence, in REGION T and III, |w|>|v| and
iw—vl—|w+v| = -2v sgn(w) (37)
Similarly, in REGIONS IT and IV, |v|>|w| and

|w—v|—Iva] = -2w sgn(v). (38)

Thus Equation 30 yields,

SEL\/

-2s.x. _sgn(e, ), if le, (i>|s,x,_
A - 1 i-2 i-1 i-1 1 i-2 (39)

i-1,1 . ¢
- >
2ei_lsgn(slxi_2), if |Slxi—2| 'ei—ll
while Equation 31 gives,
- i >
Zszxi_3sgn(ei_l), if lei—l' |szxi_3]

Bi1,2° (40)
—2ei_lsgn(52xi_3), if ]szxi_3|>|ei_l

Further, substitution of Egquations 39 and 40 in
Equation 19, provides the adaptation equations of VLMS.

When ]ei_l|>]slxi_2| and [ei_l|>}s2xi_ﬁ, VLMS is
defined by (N=2)
= .s.. . 4
a; 1 T 85,1 W s Xy pesonley ) (4D)
_ -
25,0 7 341,9% 2y (05,02 Ty _gsonle; )-(42)

Finally, we know that Equation 3 for N=2 corresponds
CILMS algorithm and two coefficients at ith instant are
given by

) (43)
) (44)

+h.x .
i sgn(ei_

1
1

2,1 %11

8,27 %1,

2

+h.xi_3

.sgn

sg (ei_

Thus the basic design of the adaptation process of

VLMS with absolute error has no significant departure

from CIMS algorithm, if |e, > s, .%, and

e, |>s iy | leial ey =il
i-1 2771i-3

However, when the ]sl.xi_2|>|ei_1| oxr ISZ'xi—3|>|ei—l

inequalities are satisfied, VLMS assumes a very

different form. That is

a = a

+2 .
1,1 3o, tR ey

sgn(s ) (45)

1 1%i-2

0
2P, _(x).2 .e,
i-1

2 = i-1

+ . (4
i,2 7 %12 sgn(s,x; _3)-(46)
Equations 45-46 indicate the degression from the CLMS
algorithm for k=1,2.

Although, the above analysis is done for the second-
order predictor, it is also valid for Nth order
predictor. Figure 6 depicts the simulation results
for the percentage of diversions of VLMS algorithm
from the CLMS algorithm for the same three speech
sentences (a,b,c) with N=12.

As is seen in Figure 6, during the adaptation of a,
for the three sentences, 90% to 80% of the time, il
diversions from CLMS algorithm are obtained.
Obviously, as we approach lower order prediction
coefficients, the percentage is decreased (especially
for sentence "c"). This is in agreement with
experimental observations which support the importance,
in the performance of most algorithms, of the first
few prediction coefficients.

V. CONCLUSIONS

Our study of VLMS-versatile LMS that minimizes an
error function has shown that VIMS for the same error
criterion offers better prediction gain (dB) than
Cummiskey's LMS (CLMS) algorxithm. This is due to the
prediction coefficients converging faster to their
optimum value in VLMS. Then, the percentage of the
departure of VIMS coefficients from the CLMS

algorithm has been studied. In further investigations
we hope to exploit the versatility of the VIMS to
operate with different error functions and compare the
performance to recently proposed dual-sign algorithm
[51.
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