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Dans un systéme de communication multiplex, préci-
sément, dans umne section quatre-cibles d'une liaison
de communication comprenant des transitions quatre-
cibles/deux—cibles, les filtres (numeriques) sont
utilisés en boucles fermés. Il est donc possible de
voir apparaftre des oscillations parasites méme si
les filtres numériques eux-mémes sont stables.

Parmi les filtres du type IIR, les filtres numéri-
ques d'ondes (WDF) se caractérisent particuliérement
bonne résistance aux oscillations parasites. Cet art-—
icle présente une analyse du phénoméne d'oscillations

parasites en boucle contenu le filtre numérique d'onde.

On a considéré deux types de filtre: le WDF classique
et le WDF avec recouvrement de la pseudopuissance
réfléchie. On a prouvé que les filtres avec recouvre-
ment de la pseudopuissance sont beaucoup plus résis—
tantes aux oscillations parasites en boucle que les
classiques filtres numériques d'ondes.

1. INTRODUCTION

As is well known, parasitic oscillations (limit
cycles) can occur in recursive digital filters due to
the finite word lengths representing signal samples.
Under zero input conditions essentially exist two
types of limit cycles: overflow oscillations and gra-
nularity oscillations. Recently a big effort has been
devoted to suppression of such oscillations in recur—~
sive filters [1—14]. The most approches, however, have
been restricted to the second~order sections [1—10].
Up to now, the problem of avoiding of both these osci-
llations has been generally solved for wave digital
and related filters only [11-13]. This may be achieved
by quite simple means guaranteeing pseudopassivity of
the filter under nonlinear conditions, e.g., for the
fixed-point two s-complement arithmetic - by appropri-
ate chopping operations []]].

However, suppression of parasitic oscillatioms in
isolated digital filters is often not sufficient to
design a properly working system because filters may
operate under looped conditions with some positive
feed-back. This situation is, e.g., typical for trans-
multiplexers. In fact, transmultiplexer filters are
connected in a loop formed by a four-wire part of a
communication link and four-wire/two-wire transitions
(Fig. 1). Under such circumstances parasitic oscilla~
tions may occur even in nonrecursive filters which are
obviously always stable under isolated conditions.
Moreover, such oscillations need not be periodic any

more. Thus, in this case, the term "parasitic oscilla-
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In a multiplexed communication system, or more pre-—
cisely, in a four-wire part of a communication link
comprising four-wire/two~wire transitions, filters
(e.g., digital filters) operate under looped condi-—
tions. Therefore, parasitic oscillations can occur
even if the digital filters by itself are stable.

Among IIR filters, wave digital filters (WDFs)
embody particularly good resistance to the parasitic
oscillations. Occurrence of these oscillations in a
loop containing a wave digital filter, is analysed.
Two filter types are considered: classical WDFs and
WDFs with retrieval of the reflected pseudopower. It
is shown that the latter are much more resistive to
parasitic oscillations under looped conditions than
the classical WDFs.

b

Schematic illustration of the
communication loop formed by a four-wire
part of a communication link and
four-wire/two-wire transitions

Fig. 1.

tions" is more appropriate than the term "limit cycles".

Suppression of parasitic oscillations in digital
filters under looped conditions has already been ana-
lysed [13]. However, in [15] it has been shown that
the results presented in [13] lack generality required
in many cases, e.g., for transmultiplexers, as the gi-
ven stability conditions are restricted to the digital
systems with one sampling rate only, and containing no
modulators in a loop.

The purpose of this paper is to formulate more gene—
ral stability conditions which would be valid for mul-
tirate systems and for systems containing filters toge-—
ther with modulators in a loop, i.e., valid for trans—
multiplexers. Two types of wave digital filters (WDFs)
are considered: classical WDFs [16] and WDFs with re-
trieval of the reflected pseudopower. The latter fil-
ters have been proposed in the generalized form in
[17-19].

The results are presented in this paper in a shor-
tened form. The full version of the paper will be pub-
lished elsewhere [14].
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2. DESCRIPTION OF THE ANALYSED MODEL

In order to investigate occurrence and suppression
of parasitic oscillations in wave digital filters under
looped conditions, the system of Fig, 1 must be repla-
ced by its simplified model containing a WDF, a product
modulator (with a carrier signal q(kT)), and an outside
system S (Fig. 2(a)).

The filter under consideration may be éither a cla-
ssical WDF (Fig. 2(b)) or that with retrieval of ref-
lected pseudopower (Fig. 2(c)).

The product modulator is of a general type. We as-—

sume only that the carrier signal q(kT), k=...-1,0,1,
24..., is real and periodic with the period
T, =NT , (D

where N is an arbitrary positive integer and T is the
sampling period. The signal q(kI) may be fully deter-
mined by an N element carrier sequence {g(kT)}, k=0,1,

.sN—1. This sequence should contain some zeros in
order to make the retrieval of the reflected pseudo-
power possible [19].

Two processes are of particular importance: multi-
plier-free modulation with sinusoidal carrier signals
and sampling rate alteration (interpolation or decima-
tion) [19]. In the latter case the carrier sequence
contains one nonzero element (e.g.,equal to 1) and
N-1 zeros. Sampling rate decrease consists in omitting
zero samples after modulation with this sequence. Sam—
pling rate increase by a factor N of a signal x(<T) ,
Kk=...=1,0,1,2,... (i.e., filling in zeros at empty
places) may be interpreted as modulation with this se-

quence of an artificially introduced signal

x(kT ) for kT = kT
o [e]

x*(kT) =
irrelevant for kT # KTO.

The outside system S in Fig. 2 is in general nonli-

near but it is reasonable, on the basis of the discus—

sion given in Section IIT-C of [13], to approximate it

by a linear system with the transfer function H™.

3. SUPPRESSION OF THE PARASITIC OSCILLATIONS

3.1. General considerations

A general WDF is shown in Fig. 3. The n—port N is
a static system, i.e., containing only multipliers,
adders, and branch nodes. We define the pseudoenergy
e(tk) stored in delays and the pseudoenergy (or in
other words — the instantaneous pseudopower) absorbed

by N at the instant tk=kT, by the following expressions

e(t) = I (t,) (2)

and

- 2 2
Pt = L6y fa (5 - b T(5)] (3

where av(tk) is the incident wave, bv(tk) is the ref-
lected wave, and GV is the port conductance correspo—
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Fig. 2. Analysed models of the communication
loop: (a) general scheme, (b) system
with classical WDF, (c) system with

retrieval of reflected pseudopower
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Fig. 3. General scheme of a WDF
nding to port v.
It is obvious that the inequality
e(t,) 2 0 (4)

holds for all t, -

We assume that the N-port N is pseudolossless (or
even pseudopassive) under ideal conditions. Then, by
proper realization (mentioned in Introduction) of
arithmetical operations of the N-port N, the following

inequality
p(t) 2 0 (5)
will also be fulfilled under nonlinear conditions for
all ¢t .
k

Consider now a spectrum E(erT) of the input signal

e(tk) to the WDF. The signal e(tk) is given by
= N
e(ty) q(t x(e) . (6>

According to (1) we can write
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. N~-1 .
E(eJuT) -1 X<ej(m~ngo)T> 7
n=| n
where
N-1
Q == & q(rye IMokT ®)
N k=0
and
Qo = ZTT/To . (€Al

From (7) it follows that in order to avoid aliasing,
FjwT

the spectrum X(e ) of the signal x(tk) must be redu-

ced to one of the bands
it I
w € <v-—-, w +1)-—J N
To o (10
v =20,1,...,N1.

Moreover the WDF passband length should not be greater
than ﬂ/To. Thus, it is very probable that the spectrum
of parasitic oscillations will also be reduced to the
band of length ﬂ/TO. Such oscillations are called in
this paper '"passband parasitic oscillations".

If a parasitic oscillation would occur in a system
of Fig. 2 then

;éﬁ;esx(tk) = (11)

where €ox is the signal-pseudoenergy defined as

ko
L ox (t) . (12)
v=0 v

]

€
SX

It may be shown [14] that for passband parasitic oscil-

lations the following relation holds
e (t)
lin 22K - Peq (13)
ke Esx<tk)

while for general parasitic oscillations inequality

e (t.)
se kK < yrp (14)
e _(t) 54
sx k
is fulfilled, where
k 9 ’
ese(tk) I e (tv) (15)
v=0

is the signal-pseudoenergy of e(tk) and

1 N-1
= - 3 qz(tv) (16)

PS
4 = v=0

is the average carrier-sequence pseudopower.
3.2. Systems with classical WDFs

Lccording to (2), (3), and (5), increase of the

pseudoenergy e(tk) is given by

k
e(t,) —ec_) = I [-p(r) + ca, (e, -

v=0

- G1b12(tk) - szzz(tk)] < (17)

< Glesa(tk) - GZEsb(tk>

where
kKoo
esa(tk) = vzo a (tv) (18a)
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and
k

2
e, () = I b, (t)
shb* "k V=0 2 v

(18b)

Now we assume that parasitic oscillations arise.

Using (13), (14), (17), and taking into account that

al(tk) = e(tk) for the system of Fig. 2(b), it may be
shown [14] that
G for general
N—P parasitic
€ b(tk) G2 *4  oscillations
lim b K (19)
k>» ssx(tk) G1 for p§s§band
-——-PS parasitic
G 9 oscillations .

From (19) and from Parseval”s theorem the following
conditions sufficient for suppression of parasitic os-

cillations follow

for general

parasitic
oscillations
lu” | < (20)
max G2 for passband
parasitic
G, P oscillations .
1 sq

We define now the minimum WDF attenuatiom, o> and

the minimum guaranteed loop attenuation, ago, by
-1

a, = In |3211maX 0, 21
-1 -1
o" = 1n |H] + 1n || (22)
[e]¢] max max
where
> (23)
s (24)

Qn is the appropriate value given by (8) (that for
W + nQO lying in the WDF passband), and X, Y = B, are

2
complex constants corresponding to the signals x(tk),
y(tk) = bz(tk)’ respectively, under sinusoidal steady-

state conditions.
Finally, from (20)-(24) we obtain the following
condition sufficient for suppression of the passband

parasitic oscillations

o' > o+ 1n (/qu/lqnl) . (25)

00
3.3. Systems with retrieval of pseudopower

The varying coefficient Y(kT) in the system of

Fig. 2(c) is given by

Y. if q(kT) # 0
YT) =< ° (26)
1 if qkT) =0

2 is an ar-
bitrary positive constant but the conductance G} is

where -1< Y, <! [17—19]. The conductance G

given by
¢ = 211(1) @n
where Z] = Zl(w) = El(p) is the input impedance of the

reference filter of the WDF {18]. By ¥ and p complex

frequencies are denoted: of the reference filter and
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of the WDF, respectively.

z ~ 1 T
2+ 1’ 27 e

Y = tanh (pT/2) = . (28)

Assume that parasitic oscillations occur. Analogical

analysis to that of Section 3.2 leads to the following

inequalities
N G, P for general
1 "sq P
— parasitic
e, (t,) G, (1-vy.) oscillations
lim 2K << 20 ° (29)
k > esx(tk) G1 PSq for p%sgband
parasitic

2 . N
Gz(l YO) oscillations

From (29) and from Parseval’s theorem the following
conditions sufficient for suppression of parasitic os-

cillations result

{ G2 for general
(I—Yo)\-————-—-‘ parasitic
N G1 P oscillations
[1” | s4 (30)
max GZ for passband
-y n [—— parasitic
2\ P oscillations
1 "sq

Taking into account that now
-1

a = 1n[H21n|max > 0 3n
where
GZ
5, | a -y ——ul (32)
G, P
1 "sq
is the appropriate conversion function [19], n=0,1,...,

N-1, the following condition sufficient for suppres-
sion of the passband parasitic oscillations may be de-

rived

a > o . (33)

4. CONCLUSIONS

In the paper the so called "'passband parasitic os—
cillations" are distinguished. That is why conditions
(20) and (30) for suppression of parasitic oscillations
have two versions: for general parasitic oscillations
and for the passband parasitic oscillations. Important
are only the latter versions. The former bring practi-
cally no restriction because the acceptable stopband
(or transition band) loss in a loop is much greater
than that following from these conditioms.

Furthermore, it is worth notice that the conditions
(25) and (33) are sufficient but not necessary for
suppression of the passband parasitic oscillations.
Thus, in practice, somewhat weaker, experimentally se—
lected conditions might be allowed. It is, e.g., per-
missible to approximate a;o in (25) and (33) by the

minimum loop attenuation

o = l|Ew| ' > an
o max ~ 00

Comparison of (25) and (33) shows that WDFs with
retrieval of reflected pseudopower are more resistive
to parasitic oscillations in a loop than the classical

WDFs provided that both filter types are characterized

by the same attenuation 0. However, for WDFs with re-
trieval of reflected pseudopower, minimization of o

needs involved optimization [18]. Moreover, the optimi-
zed 0 may occur to be greater than that obtainable by

classical WDFs.
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