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RESUME

De nombreux phénoménes en Chimie, Physique et Biolo-
gie donnent lieu & des décroissances exponentielles

oo
v(t)= ¢ Vk

k=1
santes, vO et 1 désigpant respectivement les amplitu-—
des et les temps de relaxation.

L'analyse de tels signaux multiexponentiels est dif-
ficile, &tant donné le caractdre non linéaire du pro-
bléme. Aussi de nombreuses méthodes numériques ont-—
elles été E&laborées pour analyser de tels signaux. La
plupart des procédés utilisent la méthode des moindres
carrés. Le succé&s d'une méthode donnée dépend de fac—
teurs tels que les rapports des temps de relaxation,
les rapports des amplitudes, et le niveau de bruit.
Les procédés ci-dessus peuvent conduire 3 des résultats
incorrects, notamment dans le cas de signaux trés fai-
bles brouillds par du bruit. Nous avons donc appliqué
i ce probléme une méthode originale, dénommée Pad&-
Laplace, parce qu'elle introduit la transformée de
Laplace du signal et représente cette transformée au
moyen d'approximants de Padé. Convenablement utilisée,
cette méthode fournit des valeurs correctes des temps
de relaxation et des amplitudes, et contrairement 3 la
plupart des m8thodes antérieures, elle ne requiert pas
d'hypoth&se a priori concernant le nombre de composan-
tes.

Des signaux de relaxation rapide, correspondant aux
équilibres des formes tautoméres de la cytosine, ont
&té obtenus au moyen d'une technique tr&s sensible
pour 1'étude des phénoménes de relaxation’ (saut de
température micro-ondes), et ont &té analys&s avec la
méthode de Padé-Laplace. Nous mettons en &évidence,
pour ces signaux, les capacités de la méthode @ pren-—
dre en compte les difficultés expérimentales (bruit
déterministe ou bruit blanc, nombre de points &chan-—
tillonés, choix de la ligne de base...), en évitant
ainsi 1'apparition d'instabilit&s ou d'artefacts.

Nous décrivons aussi bridvement une application de
la méthode de Padé-Laplace 3 un probléme neurobiologi-
que (collaboration avec E. Yeramian), & savoir 1'ana-
lyse en sommes d’exponentielles de la fonction de cor-
rélation du courant ionique @ travers les canaux des
membranes nerveuses. Le nombre de tels canaux travail-
lant de mani&re coopérative dans une unité fonctionne-
elle correspond au nombre de composantes exponentielles,
lequel peut &tre efficacement . déterminé par 1l'analyse
de Padé-Laplace.

exp(-t/Tk), ol n est le nombre de compo-

SUMMARY

Many phenomena in Chemistry,Physics and Bielegy occur
: 1
as a single or multiple expomential decays,V(t)= X
k=

VZ exp(~t/1,) where n is ‘the number of individual de-—
cays, Vﬁ and t, are amplitudes and decay times respective-
ly.The analysis of such a multiexponential signal is
known to be difficult due to its non linear nature andto
the high degree of correlation among the parameters.

Consequently, a number of numerical methods have
been developped for the analysis of exponential decays.
Most techniques use the well known least-squares me-
thod, to obtain the best fit between the data and the
corresponding calculated decay function. The success
of a given method depends on factors such as ratios
between decay times, ratios between amplitudes and the
noise level. Clearly the above procedure of analysis
can lead to erroneous results, especially in the case
of very weak signals blurred by noise. We therefore
applied to this problem an original method, referred
to as Padé-Laplace since it introduces the Laplace
transform of the signal and represents this transform
through Padé approximants. When suitably applied, the
method not only gives correctly the relaxation times
and the amplitudes of the components, but, in contrast
with most previous methods, it does not require an "a
priori" assumption concerning the number of components;

Fast relaxation signals from tautomeric equilibria
in cytosine, obtained with a very sensitive transient
relaxation technique, the microwave temperature jump
apparatus, were analyzed by the Padé-Laplace method. .
We demonstrate, on these specific signals, the capa-
bilities of the method to take into account experi-
mental difficulties (namely deterministic or white
noise, number of sampling points, choice of base-
line...), thus avoiding umstabilities and/or artifacts
in the results.

As a further illustration, we shall also brieffly

describe an application of the Padé-Laplce method to a
neurobiological problem (collaboration with E. Yeramian),-
namely the analysis into a sum of exponentials of the
correlation function of the ionic current through )
channels of nerve membranes. The number of such channels
clustered together and working cooper tively into a
functional unit corresponds to the number of exponen-
tial components, which may be efficiently determined

by the Padé-Laplace analysis.
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I. Synopsis of the theory of the Padé-Laplace method

The Padé-Laplace method is a special case of the
Padé-integral transform method [1]. As shown in paper
[11, the use of a suitable integral transform provides
an efficient wéy for the representation of a given
function in terms of components of some prescribed
type. The essential idea is that the components will
correspond to the singularities (poles) of the inte-
gral transform.

Now, the signal under investigations is a special
case of a large class of functions f(t)

n
(1) f(t)= 1 C, exp(p,t), t >0
k=1

where the LA are_comp]ex numbers.

As is well known,when the B are purely imaginary,
the problem of the detection of components in (1) is
easily performed by means of Fourier analysis through
the Fourier transform. When the W are not purely ima-
ginary the most appropriate integral transferm is the
unilateral Laplace transform :

(2) Lf(p)= ﬁ: e Ple(t)dt, with p complex number.

Applying this transform to the equation (1), one
obtains n Ck
(3) Lf(p)= T =

with Re p > Sﬁp(Repk), this condition ensuring the
convergence of the Laplace transform as well as of
its derivatives. Then Lf(p) is an analytic function
defined byeq.(2) ina right half complex plane.khen f(t)1s
sampled data f(tj) ®j==j Twith T
the sampling interval), the Laplace transform must

only known from

be evaluated from some numerical integration , but it
remains analytic in the variable p, in the previously
defined region. The detection problem is theoretical-
ly solved since, in eq.(3), the M| appear as the poles
of the function Lf(p) while the Ck amplitudes are the
corresponding residues. But, since Lf(p) converges
only in a region which does not contain the poles i
it is not possible to detect these poles by direct
numerical integration : in order to detect them, it
is necessary to consider the continuation of the ana-
lytic function Lf(p) in the whole complex plane.

An optimal way to perform the continuation of
Lf (p) is, firstly, to evaluate, at some point Py
suitably chosen in the convergence half-plane, the

Taylor series S of Lf(p)

r .
= I c.p', with p'=pn
r=0 'dpr P=Pq r=0 " 0

and secondly, to resort to the Padé approximants me-
thod [2] to effectively perform the continuation of

Lf(p) in the whole complex plane. A Padé approximant ,
usually noted [N/Ml, is a rational fraction,

M

N
(5) TN/M 1=A(p')/By(p" )= : aSp'S/vio b,p'", with b =1

S$S=0

satisfying the formal identity

(6) £ cp'’=

N
z
r=0 S=

M
0 asp's/vio by’ + 0 (p D)
The expression (6) leads to a system of linear equa-
tions wich allows to determine the set of coefficients
{ag} and {bv}. Once the {as} and {bv} coefficients are
available, the [N/M] Padé approximants may be rewritten
in terms of the roots {Y's} and {ﬁ'v} of the polynomi-
nals AN(p') and BM(p'). By returning to the original
variable p=p' + Po and by setting Ys=po+y; and

B =po+8'

v v ,€q.(5) now writes :

N M
(7) tN/MI=(ay/by) T (p-v¢)/ 1 (p-8)
s=1 v=1
Now, we remark that the expression (3) of Lf(p) is no-
thing but the result of the decomposition into partial
fractions of a rational function Pn_l(p)/bn(p) which
may be written, in a form analogous to the expression (7):
n-1 n

(8) Lf(p)=(a’,_1/b")) ulll(pﬂu)/kr__ll(p—pk)

From this fact it becomes obvious that the construction
of the set of the (N-1/N) Padé approximants is suffi-
cient : moreover, from a theorem about the representa-
tion of a rational function by Padé approximants [2],it
follows that all Pad€ approximants IN-1/N7] with

N > n must reduce to the [n-1/n]:Padé approximant
which will then represent exactly the rational func-
tion Lf (p) :

n-1 n
(9) Lf(p)=(a' _/b" ) W (p-a )/ W (p-
) Lf(p)=(a', 4 “)u=1(p o) k=1(p )

n-1
= (a1 /) Iy (o)) 1 (pop,)
o

Thus, from equation (9), it appears clearly that the
exponents w) of the given signal f(t) are the roots Bvof
the polynomial denominator of the [ n-1h] Padé approxi-
mant ; the number n of exponential components in f(t)
being directly given by the degree of this polynominal
denominator of [n-1/n]. Thus, this method does not re-
quire any a priori assumption about the number of com-
ponents priorto computation.
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1I. Application of the Padé-Laplace method
II.1. Analysis of chemical relaxation signals

Chemical relaxation methods are the best tool avai-
lable today to study very fast chemical or biological
equilibria in solutions. The basic principle of these
methods [3] is to perturb a chemical (biological) sys-
tem at equilibrium by a sudden change of some exter-
nal parameter such as temperature, pressure, electric
field...
tants’ concentrations to their new equilibrium value

Following the rapid variation of the reac-

allows the determination of the reaction rates. In
the most general case, where we consider a complex
reaction involving several consecutive steps in equi-
Tibrium, the concentration change of any reactants
following the perturbation can be described by a set

of n differential equations [3 1:

(10) dxi/dt=£l 24Xy

where X; is the deviation of the species i from its
equilibrium concentration and the ay, are functions
of the.rate constants and the equilibrium concentra-
tions. The solution of eqs. (10) is evidently of the

general form

n
11) f(t)=¢ C -t/t
(11) F(0)= £ ex(-t/ry)

where Ck and T, are the amplitudes and relaxation ti-
mes respectively.

In transient chemical relaxation techniques, such
as temperature-jump (T-jump), the output signal, which
is recorded in the form of equation (11) is often cha-
racterized by a very small amplitude blurred by a
strong noise level. Despite the improvements of the
experimental techniques [4,5] in numerous studies,
particularly those devoted to the dynamics of very
one-sided fast chemical reactions, the analysis of
the relaxation signal into its exponential components
could not be accurately performed with the usual me-
thods, such as least-square fitting. We thus applied
to this problem the Padé-Laplace method [1,6], whose
characteristics have been briefly summarized in the
preceding section. In the following we use this new
method to analyze fast relaxation signals, from bio-
logical tautomeric¢ equilibria in cytosine, obtained
with a very fast T-jump relaxation technique.

The N(1)HZ=N(3)H tautomeric equilibrium in cyto-
sine, a DNA nucleic base, is very one-sided in aque-
ous solution [7]. Detecting the very low proportion
(0.25%) of the short-Tived N(3)H amino-oxo species
(a few microseconds) requires a very fast and highly
sensitive relaxation method such as the microwave
T-jump apparatus [51].

This system consists of a magnetron, operating at

9.3 GHz, which delivers up to 50 pulses per second ;
with water as a solvent, dielectric losses cause tempe-
rature rises of 1.5°C for each pulse of 1.5ps duration.
The fast variations of the reactants concentration,
which follow the repetitive heating, where measured
whith a spectrophotometric detection using light-pipe
technology (rise time ca. lps, 10_5 Optical Density
(0.D.) units sensitivity). Periodical relaxation si-
gnals delivered by the photomultiplier were recorded in
the digital mode via a high speed A/D converter and
were summed in the memory of a PDP 11 computer. The
Figure 1 shows a typical relaxation signal (curve 1),
recorded in the near U.V. at A = 295 nm and obtained
after 3000 accumulations in only 100 s recording time
(30Hz repetition rate). This signal is composed of a
very fast rise in 0.D. probably arising from a solva-
tion step (10'8 to 10'95), which is filtered by the
detection system ; it is followed by a slower variation
which corresponds to the rapid interconversion between
the N(1)H and N(3)H species. Since the signal is blur-
red by an important noise its analysis in term of sum
of exponentials is not very easy.

As mentioned in the preceding section, the Padé-
Laplace ana]ysﬁs of a signal consists first in evalua-
ting through numerical integration the value of the
Laplace transform and a certain number of its derivati-
ves at some point Py and second in representing Lf(p)
through Padé approximants. Before performing these nume-
rical integrations the procedure requires to search for
the baseline of the signal in order to get it free of
DC offset. In the example shown in the figure libelow,

Pg=0.56 !
THIS SIGNAL CONSISTS SIGNAL ?CYT8.HAG
OF 2 EXPONENTIALS POINTS = 199

NB ACCU = 3000

T=2.00 MICRO-SEC

BASELINE ? 120
9, STEP
0.56,0.02

SRESULTS #

hau=  @.340256-04
pPL1= 16, 14
TAU=  ©.235506-05
pHpPLT= 33,79

b 1 20 42 S 7o 84 93 42 126 140 HICRO-SEC

Figure 1.

Relaxation signal of aqueous cytosine detected at
A = 295 nm (curve 1). This signal was accumulated 3 000
times and sampied over 200 points with a 2ps sampling
period. The results of the Padé-Laplace analysis are
given in the frame ; curves (2) and (3) represent the
computed slow and fast components in the experimental
signal (1).
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_ we select the last 120 points for the baseline:conse-
quently the results displayed in the right frame of this
figure were obtained from numerical integration over
the 80 remaining points of this signal. These results
were obtained for a value of po=0.56 and show a good
statility over a rather large interval of p0(0.45 to
0.65). It should be noted that we have checked that
the fast exponent found in the Signa] by the Padé-
Laplace analysis (T1=2-4PS) agrees well with the ex-
ponential response of the apparatus, whereas the
slow relaxation time (r2=34ps) is the expected value
for an intermolecular proton transfer which is know
to be a diffusion controlled process [7].

Another example of application of the Padé-Laplace
method has been recently completed, and we briefly
describe it below in order to further demonstrate the
capabilities of this new signal analysis method in
many research areas.

I1.2 A neurobiological problem : Analysis of the
ggdg (;o{;aggratigg ;}t;-ET}EEAMIAN (§*73
The problem at hand concerns the analysis of the

ionic currents flowing through the channels of the
nerve membrane. According to the theoretical model

of ref.[8 1 we consider independent functional subu-
nits, each of them consisting of n elementary channels
(non-independent). Each subunit current is modelled
by an integer-valued MarkoV process m(t) (number of
elementary channels open at time t). The question
arises whether the elementary channels actually work
independently (n=1) or not (n>1). In order to get an
answer, we study the two-time properties of the total
current I(t)=gm_(t), and noticeably its correlation
function B(v)=<I{t) I(t+t)>=N<m(t) m{T+t)>=N Bmm(T)
(Bmm(r) denoting the correlation function pertaining
to one subunit).It is indeed easily shown [8] that :

5 n
(12) Bmm(r) -am>” = E Cy exp(pkr)

k=1
where the n exponents uy are the non-zero eigenvalues
of the transition probability matrix, which is of
order (n+l), with one zero eigenvalue corresponding
to the stationary distribution (more generally, each
two-time probability Pij(T) is also a sum of exponen-
tials). Therefore the problem lends itself quite na-
turally to the application of the Padé-Laplace method.
Note that a correct determination of the number n of
exponential components is essential here, since it
precisely gives the number of channels working in a
dependent way 1in each subunit . Figure 2 gives the
results of Padé-Laplace analysis (with p0=0.2) for
one the correlation functions obtained from the

experimental recordings of I(t) (a very weak damped
oscillatory component has been omitted for simplicity).
We may put aside the "fast component" A3exp(u3t) becau-
se it corresponds to a kinetics of “brief openings”,
which is irrelevant as concerns the slower kinetics of
normal openings, which is the one of interest for the
study of coupling between elementary channels. Then we
are left with the components1 and 2, which have expo-
nents of the same order of magnitude, and they clearly
suggest a dependent behaviour within subunits contai-
ning n=2 channels. We also performed the Padé-Laplace
analysis for the two-time probabilities POl(t) and
PlZ(T)‘ The exponents Uy and uy, found in the correla-
tion function, were actually retrieved(weak damped
oscillatory components were also detected, but their
frequencies suggest that they could be artifacts due to
the electric power source). Thus the Padé-Laplace ana-
lysis appears able to bring an affirmative answer to
the initial question concerning the coupling between
elementary channels (and it suggest the value n=2 for
the number of these coupled channels inside each func-
tional subunit).

CUO)f Y2V -Veq)? ]
A

Analytic expression

of the continuous curve :
0.11511 exp (-0.004855 r)

+ 0.02104 exp (-0.024987 1)
+ 0,00699 exp {-0.282038 <)

0-151-

0.10

e \&b\mb\Lbb\*UQFOﬂLo

]

0 10 20 30 ‘)
ms
Figure 2.

Correlation function values of the trapsmembrane cur-
rent (circles) and its analytic representation (conti-
nuous curve) obtained through the Padé-Laplace method.
The correlation function values were calculated from
the sampled experimental recordings of the transmembra-
ne current ; the explicit analytical expression

Ay exp(plt) + A, exp(pzt) + A3 exp(th)

of the continuous curve is given in the frame.
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